केन्द्रीय विद्यालय संगठन

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

SUBJECT: MATHEMATICS
CLASS: IX

## TERM-1

STUDENT SUPPORT MATERIAL


## CHIEF PATRON

Dr. JAIDEEP DAS,<br>DEPUTY COMMISSIONER,<br>KVS, AHMEDABAD REGION

## PATRON

SMT. SHRUTI BHARGAVA, ASSISTANT COMMISSIONER, KVS, AHMEDABAD REGION

## UNDER THE SUPERVISION OF

## SHRI MOHAN CHANDRA SATYAWALI,

 PRINCIPAL,KENDRIYA VIDYALAYA NO.1, SECTOR-3 GANDHINAGAR

CONTENT DEVELOPEMENT TEAM

| S.NO | NAME OF TEACHERS | NAME OF KV |
| :---: | :---: | :---: |
| 1 | MR S.PRASAD | KV AFS WADSAR |
| 2 | MR BIPIN KUMAR | KV SAHIBAUG |
| 3 | MR H M JADEJA | KV GANDHINAGAR CANTT |
| 4 | MR VISHNU LEUA | KV SABARMATI |

# CLASS IX: CHAPTER - 1 <br> NUMBER SYSTEM <br> (Term-I) 

(Number System)

## Key Concepts



1) Natural numbers are $-1,2,3, \ldots \ldots \ldots . . . . . . .$. Denoted by $N$.
2) Whole numbers are - $0,1,2,3, \ldots \ldots \ldots . . . . . . . .$. denoted by $W$.
3) Integers - $\qquad$ $-3,-2,-1,0,1,2,3$, $\qquad$ denoted by Z .
4) Rational numbers - All the numbers which can be written in the form $p / q, q \neq 0$ are called rational numbers where p and q are integers.
5) Irrational numbers - A number s is called irrational, if it cannot be written in the form $\mathrm{p} / \mathrm{q}$ where p and q are integers and $q \neq 0$.
6) The decimal expansion of a rational number is either terminating or nonterminating recurring. Thus we say that a number whose decimal expansion is either terminating or non-terminating recurring is a rational number.
7) The decimal expansion of a irrational number is non terminating non-recurring.
8) All the rational numbers and irrational numbers taken together.
9) Make a collection of real number.
10) A real no is either rational or irrational.
11) If $r$ is rational and $s$ is irrational then $r+s, r-s, r . s$ are always irrational numbers but $\mathrm{r} / \mathrm{s}$ may be rational or irrational.
12) Every irrational number can be represented on a number line using Pythagoras theorem.
13) Rationalization means to remove square root from the denominator.
a. $\frac{3+\sqrt{5}}{\sqrt{2}}$ to remove we will multiply both numerator \& denominator by $\sqrt{2}$
$\frac{1}{a \pm \sqrt{b}}$ its rationalization factor $a \mp \sqrt{b}$

## MULTIPLE CHOICE QUESTION

1 A rational number between 3 and 4 is:
(a) $\frac{3}{2}$
(b) $\frac{4}{3}$
(c) $\frac{7}{2}$
(d) $\frac{7}{4}$

2 Which one of the following is not a rational number:
(a) $\sqrt{2}$
(b) 0
(c) $\sqrt{4}$
(d) $\sqrt{-16}$

3 Which one of the following is an irrational number:
(a) $\sqrt{4}$
(b) $3 \sqrt{8}$
(c) $\sqrt{100}$
(d) $-\sqrt{0.64}$
$4 \quad 3 \frac{3}{8}$ in decimal form is:
(a) 3.375
(b) 3.35
(c) 33.75
(d) 337.5
$50.3333 \ldots$ in $\frac{p}{q}$ form is
(a) $\frac{6}{99}$
(b) $\frac{1}{3}$
(c) $\frac{4}{7}$
(d) $\frac{5}{9}$

6 The value of $(4+\sqrt{2})(4-\sqrt{2})$ is:
(a) 2
(b) 3
(c ) 14
(d) 6

7 The value of $(2+\sqrt{2})(2-\sqrt{2})$ is:
(a) 2
(b) 3
(c) 4
(d) 6

8 The value of $(3+\sqrt{5})^{2}$
(a) $14+6 \sqrt{5}$
(b) $4+6 \sqrt{5}$
(c) $4-6 \sqrt{5}$
(d) $14-6 \sqrt{5}$

9 The value of $(5+\sqrt{7})(4+\sqrt{3})$ is:
(a) $20+5 \sqrt{3}+4 \sqrt{7}+\sqrt{21}$
(b) $5+20 \sqrt{3}+21 \sqrt{7}+4 \sqrt{21}$
(c) $20-5 \sqrt{3}+4 \sqrt{7}-\sqrt{21}$
(d) $20+5 \sqrt{3}-4 \sqrt{7}-\sqrt{21}$

10 Which of the following is true?
(a) Every whole number is a natural number
(b) Every integer is a rational number
(c) Every rational number is an integer (
d) Every integer is a whole number

11 If we add two irrational numbers, the resulting number
(a) is always an irrational number
(b) is always a rational number
(c) may be a rational or an irrational number
(d) always an integer

12 The value of $(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})$ is:
(a)2
(b) 4
(c) 3
(d) -4

13 On rationalizing the denominator of $\frac{1}{\sqrt{7}}$, we get
(a) 7
(b) $\frac{\sqrt{7}}{7}$
(c) $-\frac{\sqrt{7}}{7}$
(d) $\sqrt{7}$

14 On rationalizing the denominator of $\frac{1}{\sqrt{7}+\sqrt{6}}$ we get
(a) $\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}$
(b) $\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}$
(c) $\sqrt{7}+\sqrt{6}$
(d) $\sqrt{7}-\sqrt{6}$

15 On rationalizing the denominator of $\frac{1}{\sqrt{2}+\sqrt{3}}$ we get
(a) $\sqrt{2}-\sqrt{3}$
(b) $\sqrt{3}-\sqrt{2}$
(c) $2-\sqrt{3}$
(d) $3-\sqrt{2}$

16 The value of $(16)^{\frac{3}{4}}$ is :
(a) 8
(b) 16
(c) 32
(d) 4

17 The value of $(125)^{\frac{-1}{3}}$ is :
(a) $\frac{1}{5}$
(b) $\frac{1}{25}$
(c) $\frac{1}{15}$
(d) $\frac{1}{125}$

18 Decimal expansion of a rational number is terminating if in its denominator there is:
(a) 2 or 5
(b) 3 or 5
(c) 9 or 11
(d) 3 or 7

19 The number of rational numbers between $\sqrt{3}$ and $\sqrt{5}$ is
(a) One
(b) 3
(c) none
(d) infinitely
many

20 The value of n for which $\sqrt{n}$ be a rational number is
(a) 2
(b) 4
(c) 3
(d) 5

21 The value of $(\sqrt{3}-\sqrt{7})^{2}$ is :
(a) $10+2 \sqrt{21}$
(b) $10-2 \sqrt{21}$
(c) $4+2 \sqrt{21}$
(d) $4-2 \sqrt{21}$

22 The value of $(5+\sqrt{5})(5-\sqrt{5})$ is
(a) 25
(b) 20
(c ) 50
(d) 15

23 Which of the following is an irrational number?
(a) 3.14
(b) $3 . \overline{14}$
(c) $3.1 \overline{4}$
(d) $3.141141114 \ldots$

24 Express $0 . \overline{36}$ as a fraction in simplest form.
(a) $\frac{4}{11}$
(b) $\frac{5}{11}$
(c) $\frac{11}{4}$
(d) $\frac{11}{15}$

25 Rationalize the denominator of $\frac{6}{3+\sqrt{2}}$
(a) $\frac{6(3-\sqrt{2})}{7}$
(b) $\frac{6(3+\sqrt{2})}{7}$
(C) $\frac{6(4-\sqrt{2})}{7}$
(d) $\frac{6(3-\sqrt{2})}{(3-\sqrt{2})}$

## Chapter - 4 <br> (Linear Equations in two variables)

## Key Concept

1) An equation of the form $a x+b y+c=0$ where $\mathrm{a}, \mathrm{b}$ and c are real numbers such that a and $b$ are not both zero is called a linear equation in two variables.
2) A pair of values of x and y which satisfy the equation $a x+b y+c=0$ is called a solution of the equation.
3) A linear equation in two variables has infinitely many solutions.
4) The graph of every linear equation in two variables is a straight line.
5) $y=0$ is the equation of $x$-axis and $x=0$ is equation of $y$-axis.
6) The graph of $x=a$ is a straight line parallel to the $y$-axis.
7) The graph of $y=a$ is a straight line parallel to the $x$-axis.
8) An equation of the type $y=m x$ represent a line passing through the origin.

## MULTIPLE CHOICE QUESTION

$1 \mathrm{x}=-5$ can be written in the form of equation in two variable as
(a) $x+o . y+5=0$
(b) $0 . x+y=-5$
(c) $0 . x+o . y=-5$
(d) $0 . x+o . y=+5$

2 The linear equation $3 x-2 y=5$ has
(a) a unique solution
(b) two solutions
(c) no solution
(d) infinitely many solutions.

3 The equation of $x$-axis is
(a) $x=k$
(b) $y=0$
(c) $x=0$
(d) $y=k$

4 Any point on the $y$-axis is of the form
(a) $(x, y)$
(b) $(x, x)$
(c) $(0, y)$
(d) $(x, 0)$

5 The solution of the equation $x-2 y=4$ is:
(a) $(0,2)$
(b) $(4,0)$
(c) $(1,1)$
(d) $(2,0)$

6 In graphical representation of $y=-4$, line is:
(a) parallel to $x$ - axis
(b) parallel to $y$ - axis
(c) passes through origin
(d) None of these.

7 The graph of line $x-y=0$ passes through:
(a) $(2,3)$
(b) $(3,4)$
(c) $(5,6)$
(d) $(0,0)$

8 Point $(4,1)$ lies on the line:
(a) $x+2 y=5$
(b) $x+2 y=-6$
(c) $x+2 y=6$
(d) $x+2 y=16$

9 Graph of $x=2$ is a line:
(a) parallel to $x$ - axis
(b) parallel to $y$ - axis
(c) passes through origin
(d) None of these.

10 The equation $x=7$, in two variables, can be written as
(a) $x+0 y=7$
(b) $0 x+y=7$
(c) $0 x+0 y=7$
(d) $x+y=7$

11 The equation of $x$-axis is of the form
(a) $x=0$
(b) $y=0$
(c) $x+y=0$
(d) $x=y$

12 If a linear equation has solutions $(-2,2),(0,0)$ and $(2,-2)$, then its is of the form
(a) $y-x=0$
(b) $x+y=0$
(c) $-2 x+y=0$
(d) $-x+2 y=0$

13 The graph of the linear equation $2 x+3 y=6$ is a line which meets the $x$ axis at the point
(a) $(2,0)$
(b) $(0,3)$
(c) $(3,0)$
(d) $(0,2)$

14 If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation:
(a) changes
(b) remains the same
(c) changes in case of multiplication only
(d) changes in case of division only

15 How many linear equation in $x$ and $y$ can be satisfied by $x=1$ and $y=2$ ?
(a) only one
(b) two
(c) infinitely many
(d) three

16 Which of the following is not a linear equation in two variables?
(a) $a x+b y=c$
(b) $a x^{2}+b y=c$
(c) $2 x+3 y=5$
(d) $3 x+2 y=6$

17 The graph of $a x+b y+c=0$ is
(a) a straight line parallel to $x$-axis
(b) a straight line parallel to $y$-axis
(c) a general straight line
(d) a line in the 2nd and 3rd quadrant

18 The solution of a linear equation in two variables is
(a) a number which satisfies the given equation
(b) an ordered pair which satisfies the given equation
(c) an ordered pair, whose respective values when substituted for $x$ and $y$ in the given equation, satisfies it
(d) none of these

19 A linear equation in two variables has
(a) no solution
(b) only one solution
(c) only two solutions
(d) infinitely many solutions

20 The graph of the line $y=-3$ does not pass through the point
(a) $(2,-3)$
(b) $(3,-3)$
(c) $(0,-3)$
(d) $(-3,2)$

21 Solution of the equation $2 x+1=x+3$ is:
(a) 3
(b) 1
(c) 2
(d) 4

22 Any point on the $y=x$ is of the form
(a) $(a, a)$
(b) $(0, a)$
(c) $(a, 0)$
(d) $(\mathrm{a},-\mathrm{a})$

23 The graph of $y+2=0$ is a line
(a) making an intercept -2 on the $x$-axis
(b) making an intercept -2 on the $y$-axis
(c) parallel to the $x$-axis at a distance of 2 units below the $x$-axis
(d) parallel to the $y$-axis at a distance of 2 units to the left of $y$-axis

24 The graph of $x=4$ is a line
(a) making an intercept 4 on the $x$-axis
(b) making an intercept 4 on the $y$-axis
(c) parallel to the $x$-axis at a distance of 4 units from the origin
(d) parallel to the $y$-axis at a distance of 4 units from the origin

25 The point of the form $(a,-a)$, where $a \neq 0$, lies on
(a) the $x$-axis
(b) the $y$-axis
(c) the line $y=x$
(d) the line $x+y=0$

## CLASS IX : CHAPTER - 1

NUMBER SYSTEM
( Term-I)
(Number System)

## ANSWER

$\begin{array}{llllllll}\text { 1) } c & \text { 2) } d & \text { 3)b } & \text { 4) } a & \text { 5) } b & 6) c & \text { 7) } a & \text { 8) } a\end{array}$ 9) $\left.a \quad 10\right) b$
$\begin{array}{llllllll}11) c & 12) b & 13) b & 14) d & 15) a & 16) a & 17) a & 18) a\end{array}$ 21)b 22)b 23) d 24)a 25) a

Chapter-4
(Linear Equations in two variables)
Answer
$\begin{array}{lllllllll}\text { 1) } a & \text { 2) } d & \text { 3) } b & \text { 4) } c & \text { 5) } b & \text { 6) } a & \text { 7) } d & 8) ~ c & 9) b \\ \text { 10) } a\end{array}$
11 ) b 12) b 13) c 14)b 15)c 16) b 17) c 18) c 19) d 20) c
$\begin{array}{lllll}21) b & 22) & \text { a } & 23) \mathrm{c} & 24) d \\ \text { 25) d }\end{array}$

## SUBJECT: MATHEMATICS

GRADE: $9^{\text {TH }}$

## TOPIC NUMBER SYSTEM (CCT QUESTION)

SET 1

| Q.NO. |  | Question w | Answer Optio |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | What part of this figure is shaded? |  |  |  | THT |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 1/5 | 3/5 | 4/5 | 2/5 | ) |
| Q.NO. |  | Question w | Answer Optio |  | IMAGE IF ANY |
| 2 | Which division will leave a remainder 2? |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 345 / 3 | $536 / 4$ | 587 / 5 | 711/9 |  |
| Q.NO. |  | Question w | Answer Optio |  | IMAGE IF ANY |




SET 3


| Q.NO. | Question with Answer Options Which of the following is equal to 1 ? |  |  |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 |  |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | $17^{-2}+17^{2}$ | $17^{2}-17^{-2}$ | $17^{-2} \times 17^{2}$ | $17^{2} / 17^{2}$ |  |
| Q.NO. |  | Question | nswer Optio |  | IMAGE IF ANY |
| 5 | Which of the following numbers will have a '6' in the unit's place? |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | $2^{6}$ | $2^{16}$ | $2^{26}$ | $2^{46}$ |  |

## SET 4

| Q.NO. | Question with Answer Options <br> Scientific Notation is a concise way of writing any number in the form $a \times 10^{b}$ where $a$ is a number between 1 and 10 and $b$ is aninteger. For example, 652 would be written as $6.52 \times 10^{2}$ in this notation. Which of the following is most likely to contain a negative exponent of 10 when represented in scientific notation? |  |  |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
|  |  | Answe | Options |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | Number of cells in a honeycomb | Speed of light in kilometres per second | Diameter of a blood cell in centimetres | Mass of an airplane in kilograms |  |
|  |  |  |  |  |  |



| Q.NO. | Question with Answer Options |  |  |  | IMAGE IF ANY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | A part of a room thermometer is shown below.What temperature is the thermometer showing? |  |  |  |  |  |
|  | Answer Options |  |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |  |
|  | -4.3 deg C | -4.6 deg C | -5.2 deg C | -5.4 deg C |  |  |

SET 5

| $\begin{array}{\|l} \hline \text { Q.NO. } \\ \hline 1 \end{array}$ | Question with Answer Options |  |  |  | IMAGE IF ANY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | The weigh CD's on o other. Wh <br> OPTION <br> A <br> 20mg | g scale bel side balan is the weig <br> Answ OPTION <br> B <br> 10 g | has 5 regu ing a weig on the rig Options OPTION C 100 g | ar sized on the likely to be? <br> OPTION <br> D <br> 300 g |  | $1$ |


| Q.NO. | Question with Answer Options <br> What is the smallest number by which you have to multiply the product $3 \times 4 \times 5 \times 11 \times 15$ to get a perfect square number? |  |  |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |
| Q.NO. | Question with Answer Options <br> If the numerator of an expression is the sum of $p$, $q$ and $r$ and the denominator of the expression is the sum of $3 p, 3 q$ and $3 r$,thenexpression will be reduces to |  |  |  | IMAGE IF ANY |
| 3 |  |  |  |  |  |
| Q.NO. |  | estion with | Answer Op |  | IMAGE IF ANY |
| 4 | Which of a product | se sets of 54834? | nsecutive <br> Options <br> OPTION <br> C <br> 33,34,35 | umbers has <br> OPTION <br> D <br> 22,23,24 |  |
|  |  |  |  |  |  |


| Q.NO. | Question with Answer Options |  | IMAGE IF ANY |
| :--- | :--- | :--- | :--- |
| 5 | At a party, one person chooses to anchor a game <br> and everyone else stands in V formations as <br> shown below.3 people stand in the innermost V, <br> 5 in the next and so on. If there are 125 people <br> (including the anchor) at the party, how many <br> complete V 's will they be able to form? |  |  |
|  |  |  |  |

## SUBJECT: MATHEMATICS

GRADE: $9^{\text {TH }}$
TOPIC LINEAR EQUATION IN TWO VARIABLE (CHAPTER 4)

SET 1

| Q.NO. | Question with Answer Options <br> There are only 1-rupee and 2 -rupee coins in a bag. The total value of the 1rupee coins is the same as the total value of the 2-rupee coins. If the bag has xcoins in all, what is their total value (in Rs.)? |  |  |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 3 x | 4x/3 | 3x/4 | 3x/2 |  |
| Q.NO. |  | Question | Answer Optio |  | IMAGE IF ANY |
| 2 | A 3 kg bag of rice lasts exactly 30 days for Mrs. and Mr. Pestonjee when both consume equal amounts. If Mr. Pestonjee cuts down his rice intake by half on his doctor's advice, how many days would a 3 kg bag last them? |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 5 | 40 | 42 | 45 |  |
|  |  |  |  |  |  |


| Q.NO. |  | Question | Answer Option |  | IMAGE IF ANY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | A 200 metre long train running at a speed of 10 metre/second starts passing by a 200 metre long platform at exactly 11:00:10. See the adjoining images. What would be the time when the entire train just finishes crossing the platform? |  |  |  |  |
|  | Answer Options |  |  |  | , |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 11:00:20 | 11:00:30 | 11:00:44 | 11:00:50 |  |
| Q.NO. |  | Question | Answer Option |  | IMAGE IF ANY |
| 4 | Shopkeeper decreases the selling price of a ceiling fan by $10 \%$ at the start of winter. When winter is over, he decides to raise the price back to the original selling price. By what percent would he need to increase the lowered price in order to do this? |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A | OPTION B | OPTION C | OPTION D |  |
|  | 20\% | 11.11\% | 10\% | 9.99\% |  |
| Q.NO. |  | Question | Answer Option |  | IMAGE IF ANY |
| 5 | Sohail's autumn break lasted $x$ days. Of these, he was out of station for 8 days. For the remaining days, his mother promised him Rs. 10 per day to clean up the whole house. At the end of the break, she was so happy with his work, that she decided to square the amount due to him. What is the amount that Sohail got? |  |  |  |  |
|  | Answer Options |  |  |  |  |
|  | OPTION A Rs (100x ${ }^{2}-8$ ) | OPTION B Rs $[10+x-8]^{2}$ | OPTION C | OPTION D |  |




## SUBJECT: MATHEMATICS

$$
\text { GRADE: } 9^{\text {TH }}
$$

TOPIC NUMBER SYSTEM ANSWER

| Q. N0. | $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SET 1 | D | C | B | D | A |
| SET 2 | D | D | C | C |  |
| SET 3 | B | D | C | B |  |
| SET 4 | C | D | A | B |  |
| SET 5 | C | A | B | B |  |

TOPIC LINEAR EQUATION IN TWO VARIABLE (CHAPTER 4) ANSWER

| Q. N0. | $\mathbf{1}$ | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SET 1 | B | B | D | B |  |
| SET 2 | B | C | D | D |  |

## Class IX Mathematics Chapter 3 Coordinate Geometry

## Summary

1. To locate the position of an object or a point in a plane, we require two perpendicular lines. One of them is horizontal, and the other is vertical.
2. The plane is called the Cartesian, or coordinate plane and the lines are called the coordinate axes.
3. The horizontal line is called the $x$-axis, and the vertical line is called the $y$ axis.
4. The coordinate axes divide the plane into four parts called quadrants.
5. The point of intersection of the axes is called the origin.
6. The distance of a point from the $y$-axis is called its $x$-coordinate, or abscissa, and the distance of the point from the $x$-axis is called its $y$-coordinate, or ordinate.
7. If the abscissa of a point is $x$ and the ordinate is $y$, then $(x, y)$ are called the coordinates of the point.
8. The coordinates of a point on the $x$-axis are of the form $(x, 0)$ and that of the point on the $y$-axis are $(0, y)$.
9. The coordinates of the origin are $(0,0)$.
10. The coordinates of a point are of the form (,++ ) in the first quadrant, $(-,+)$ in the second quadrant, $(-,-)$ in the third quadrant and $(+,-)$ in the fourth quadrant, where + denotes a positive real number and - denotes a negative real number.




Coordinates of P (4, 3)
Q (-6, -2)
M $(4,0)$
$N(0,3)$
$R(-6,0)$
S (0, -2)
O $(0,0)$

## Multiple Choice Questions

(a) X - axis
(b) $Y$ - axis
(c) Both $X$ and $Y$ axes
(d) None
(a) Positive Real Number
(b) Negative Real Number
(c) Zero
(d) None
$x$ and $y$ coordinates of any point lying in the third quadrant are
(a) Both Positive Real Number
(b) Both Negative Real Number
(c) One Positive and One Negative Real Number
(d) None

The point with coordinates $(5,-3)$ lies in the $\qquad$
(a) First Quadrant
(b) Second Quadrant
(c) Third Quadrant
(d) Fourth Quadrant

The point with coordinates $(5,0)$ lies on the $\qquad$
(a) $X$ - axis
(b) $Y$ - axis
(c) Both $X$ and $Y$ axes
(d) None
(a) 4 Units
(b) -4 Units
(c) 6 Units
(d) None

What is the coordinate of the point P shown on the coordinate grid?

(a) $(-4,-5)$
(b) $(4,-5)$
(c) $(-4,5)$
(d) $(4,5)$

A point $\mathrm{P}(a, b)$ is such that: $a<0, b>0$. In which quadrant does the point $P$ lie?
(a) First Quadrant
(b) Second Quadrant
(c) Third Quadrant
(d) Fourth Quadrant

Amit's school is 5 km to the west and 3 km north of his house. He represented his house and his school on a coordinate grid, with his house located at the origin, and the positive $x$ axis represent the direction that is east of his house. If 1 unit on the coordinated grid represents 1 km , what will be the coordinate of his school?
(a) $(5,3)$
(b) $(3,5)$
(c) $(-5,3)$
(d) $(3,-5)$
$\qquad$
(a) Rectangle
(b) Rhombus
(c) Square
(d) Parallelogram

11 The point with coordinates ( $p, q$ ) where $p=q$ lies on $\qquad$ quadrants.
(a) First and Second
(b) Second and Third
(c) Third and Fourth
(d) First and Third

12 The points $(-3,4)$ and $(3,-4)$ lies on
(a) The Same Quadrants
(b) First and Second Quadrants
(c) Second and Third Quadrants
(d) Second and Fourth Quadrants

13 The positive abscissa of a point lies on
(a) First and Second Quadrants
(b) Second and Fourth Quadrants
(c) First and Fourth Quadrants
(d) Second and Third Quadrants

14 The negative ordinate of a point lies on
(a) First and Second Quadrants
(b) Second and Third Quadrants
(c) Third and Fourth Quadrants
(d) First and Fourth Quadrants

15 The point $(-7,0)$ lies on the
(a) Positive side of $X$ axis
(b) Negative side of $X$ axis
(c) Positive side of $Y$ axis
(d) Negative side of $Y$ axis

The point $(0,6)$ lies on the
(a) Positive side of $X$ axis
(b) Negative side of $X$ axis
(c) Positive side of $Y$ axis
(d) Negative side of $Y$ axis

17 The origin lies on
(a) $X$ axis
(b) Y axis
(c) Both $X$ and $Y$ axes
(d) None
$A B C$ is an equilateral triangle as shown in the figure, Find the coordinates of vertex $A$.

(a) (6.0)
(b) $(0,6)$
(c) $(0,3 \sqrt{3})$
(d) $(3 \sqrt{3}, 0)$

19 Find the distance between the points $(0,5)$ and $(0,-3)$
(a) 5 units
(b) 3 units
(c) 2 units
(d) 8 units

20 Find the distance between the points $(3,0)$ and $(-5,0)$
(a) 5 units
(b) 3 units
(c) 2 units
(d) 8 units
(a) Both Positive Real Number
(b) Both Negative Real Number
(c) One Positive and One Negative Real Number
(d) None

22 The distance of a point $F(-4,6)$ from the $X$ axis is $\qquad$
(a) 4 Units
(b) -4 Units
(c) 6 Units
(d) -6 Units

A point $\mathrm{P}(a, b)$ is such that: $a<0, b<0$. In which quadrant does the point $P$ lie?
(a) First Quadrant
(b) Second Quadrant
(c) Third Quadrant
(d) Fourth Quadrant

24 On joining points ( 0,0 ) , ( 0,2 ), (5, 2) and (5, 0), we obtain a $\qquad$
(a) Rectangle
(b) Rhombus
(c) Square
(d) Parallelogram
(a) Same Axes
(b) Different Axes
(c) First Quadrant
(d) Third Quadrant

## Case Study based Questions (Answer any four sub parts)

Students of a school are standing in rows and columns in their playground for a drill practice. $A, B, C$ and $D$ are the positions of four students as shown in the figure.

(i) What are the coordinates of $A$ and $B$ respectively?
(a) $A(3,5) ; B(7,8)$
(b) $A(5,3) ; B(8,7)$
(c) $A(3,5) ; B(7,9)$
(d) $A(5,3) ; B(9,7)$
(ii) What are the coordinates of C and D respectively?
(a) $\mathrm{C}(11,5)$; $\mathrm{D}(7,1)$
(b) $C(5,11) ; D(1,7)$
(c) $\mathrm{C}(5,11) ; \mathrm{D}(7,1)$
(d) $\quad C(5,11) ; D(-1,7)$
(iii) What is the distance between $B$ and $D$ ?
(a) 5 units
(b) 14 units
(c) 8 units
(d) 10 units
(iv) What is the distance between $A$ and $C$ ?
(a) 5 units
(b) 14 units
(c) 8 units
(d) 10 units
(v) What are the coordinates of the point of intersection of AC and BD?
(a) $(7,5)$
(b) $(5,7)$
(c) $(7,7)$
(d) $(5,5)$

Aditya is a Class IX student residing in a village. One day, he went to a city Hospital along with his grandfather for general check-up. From there he visited three places -
School, Library and Police Station. After returning to his village, he plotted a graph by taking Hospital as origin and marked three places on the graph as per his direction of movement and distance. The graph is shown below:

(i) What are the coordinates of School?
(a) $(3,2)$
(b) $(2,3)$
(c) $(3,5)$
(d) $(5,3)$
(ii) What are the coordinates of Police Station?
(a) $(2,-1)$
(b) $(2,1)$
(c) $(-2,-1)$
(d) $(-2,1)$
(iii) Distance between school and police station is
(a) 4 units
(b) 3 units
(c) 2 units
(d) 1 unit
(iv) What are the coordinates of Library?
(a) $(2,6)$
(b) $(2,-6)$
(c) $(6,-2)$
(d) $(6,2)$
(v) In which quadrant the point $(-1,4)$ lies?
(a) Quadrant I
(b) Quadrant II
(c) Quadrant III
(d) Quadrant IV

(i) What is the distance of the SKULL ROCK from the $x$-axis?
(a) 2 units
(b) 3 units
(c) 4 units
(d) 5 units
(ii) The coordinates of CAVE OF DEATH are
(a) $(5,3)$
(b) $(3,5)$
(c) $(3,3)$
(d) $(5,5)$
(iii) The distance between FOUR CROSS CLIFF and the CAVE OF DEATH is
(a) 2 units
(b) 3 units
(c) 4 units
(d) 5 units
(iv) The coordinates of THREE PALMS are
(a) $(4,6)$
(b) $(6,4)$
(c) $(4,4)$
(d) $(6,6)$
(v) The distance of THREE PALMS from $Y$ axis is
(a) 4 units
(b) 5 units
(c) 6 units
(d) 7 units

Kumar has a rectangular Sketch - I, which he needs to draw on a coloured paper of length and breadth 32 units and 16 units respectively, using a plotter (Sketch - II). Plotter is a device which is attached to a computer like a printer It is used for drawing complicated sketches. Plotter accepts only positive coordinates where the point $(0,0)$ is the left-bottom corner of the paper. The sketch ABCD needs to be centrally aligned on the paper.


Sketch - 1

(i) What are the coordinates of $A$ and $B$ respectively (in sketch 2)?
(a) $A(13,10) ; B(19,6)$
(b) $A(13,10) ; B(19,10)$
(c) $A(19,6) ; B(13,10)$
(d) $A(19,6) ; B(13,6)$
(ii) What are the coordinates of C and D respectively (in sketch 2 )?
(a) $C(13,10) ; D(19,6)$
(b) $C(13,10) ; D(19,10)$
(c) $C(13,10) ; D(13,6)$
(d) $C(19,6) ; \quad D(13,6)$
(iii) The coordinates of point O (in sketch 2 ) is
(a) $(0,0)$
(b) $(16,8)$
(c) $(8,16)$
(d) $(16,32)$
(iv) The point on the $y$-axis (in sketch 2 ) which is equidistant from the points $B$ and $C$ is
(a) $(0,8)$
(b) $(8,0)$
(c) $(-8,0)$
(d) $(0,-8)$
(v) The point on the $x$-axis (in sketch 2 ) which is equidistant from the points $C$ and $D$ is
(a) $(0,-16)$
(b) $(16,0)$
(c) $(-16,0)$
(d) $(0,16)$

The Class IX students of a secondary school in Krishinagar have been allotted a rectangular plot of land for their gardening activity. Sapling of Gulmohar are planted on the boundary at a distance of 1 m from each other. There is a lawn PQRS in the ground as shown in below figure.

(i) What are the coordinates of C , taking A as origin?
(a) $\mathrm{C}(6,10)$
(b) $\mathrm{C}(10,10)$
(c) $\mathrm{C}(6,6)$
(d) $\mathrm{C}(10,6)$
(ii) What are the coordinates of R , taking A as origin?
(a) $R(6,5)$
(b) $R(5,5)$
(c) $R(5,6)$
(d) $\quad R(6,6)$
(iii) Side of lawn is
(a) 4 units
(b) $\sqrt{ } 34$ units
(c) 34 units
(d) None
(iv) Shape of lawn is
(a) Rectangle
(b) Square
(c) Parallelogram
(d) Rhombus
(v) Area of lawn is
(a) 30 sq. units
(b) 60 sq. units
(c) 45 sq. units
(d) None

## Answers

1 (b) $Y$ - axis
2 (c) Zero
3 (b) Both Negative Real Numbers
4 (d) Fourth Quadrant
5 (a) $X$ - Axis
6 (a) 4 Units
7 (d) $(4,5)$
8 (b) Second Quadrant
9 (c) $(-5,3)$
10 (c) Square
11 (d) First and Third
12 (d) Second and Fourth Quadrant
13 (c) First and Fourth Quadrant
14 (c) Third and Fourth Quadrant
15 (b) Negative side of X - Axis
16 (c) Positive side of $Y$ - Axis
17 (c) Both X and Y axes
18 (c) $(0,3 \sqrt{3})$
19 (d) 8 units
20 (d) 8 units
21 (a) Both positive real numbers
22 (c) 6 units
23 (c) Third Quadrant
24 (a) Rectangle
25 (b) Different Axes
26 (i) (c) A (3, 5); B (7, 9)
(ii) (a) $C(11,5) ; D(7,1)$
(iii) (c) 8 units
(iv) (c) 8 units
(v) $(a)(7,5)$

27
(i) (b) $(2,3)$
(ii) (a) $(2,-1)$
(iii) (a) 4 units
(iv) (d) $(6,2)$
(v) (b) Quadrant II

28
(i)
(d) 5 units
(ii) (a) $(5,3)$
(iii) (b) 3 units
(iv) (b) $(6,4)$
(v) (c) 6 units
(i) (b)
A $(13,10)$; $(19,10)$
(ii) (d) $C(19,6) ; D(13,6)$
(iii) (b) $(16,8)$
(iv) (a) $(0,8)$
(v) (b) $(16,0)$
(i) (d) $C(10,6)$
(ii) (c) $\quad R(5,6)$
(iii) (b) $\sqrt{ } 34$ units
(iv) (d) Rhombus
(v) (a) 30 sq. units

# CHAPTRER-6 LINES AND ANGLES 

## GIST OF CHAPTER

- Lines in a plane which do not intersect are called parallel lines and the distance between them is constant.
- A line which intersect two or more given lines in distinct points is called a transversal to the given lines.
- If two parallel lines are intersected by a transversal, then
(a) each pair of corresponding angles are equal.
(b) each pair of alternate interior angles are equal.
(c) sum of co-interior angles on the same side of the transversal are supplementary.
- If two lines are intersected by a transversal and any one of the following point is true, then the lines are said to be parallel.
(a) If any pair of corresponding angles are equal.
(b) If any pair of alternate angles are equal.
(c) If sum of any pair of co-interior angles on the same side of a transversal is supplementary.
- Two lines which are parallel to the same line are parallel to each other.
- Two lines which are perpendicular to the same line are parallel to each other.
- If a transversal intersects lines $I$ and $m$ in distinct points $A$ and $B$. then the lines / and $m$ are said to make an intercept $A B$ on that transversal.
- Three or more points lying on the same line are called collinear points; otherwise they are called non-collinear points.
- If the non-common arms of two adjacent angles form a line then these angles make a linear pair.
- If a ray stands on a line, then the sum of two adjacent angles so formed is $180^{\circ}$.
- If the sum of two adjacent angles is $180^{\circ}$, then the non-common arms of the angles form a line.
- If two lines intersect each other, then the vertically opposite angles are equal.
- The sum of the angles of a triangle is $180^{\circ}$.
- If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.


## MULTIPLE CHOICE QUESTIONS

1. If two complementary angles are in the ratio of $11: 7$. then the angles are
(a) $55^{\circ}, 35^{\circ}$
(b) $50^{\circ}, 40^{\circ}$
(c) $45^{\circ}, 45^{\circ}$
(d) $30^{\circ}, 60^{\circ}$
2. If the difference between two complementary angles is $20^{\circ}$, then the angles are
(a) $55^{\circ}, 35^{\circ}$
(b) $50^{\circ}, 40^{\circ}$
(c) $45^{\circ}, 45^{\circ}$
(d) $30^{\circ}, 60^{\circ}$
3. In the given figure, angle $x$ is
(a) $80^{\circ}$
(b) $30^{\circ}$
(c) $20^{\circ}$
(d) $100^{\circ}$
4. In triangle $A B C, \angle B=45^{\circ}, \angle C=55^{\prime \prime}$ and the bisector of $\angle A$ meets $B C$ at a point $D$. The measure of $\angle A D B$ is
(a) $50^{\circ}$
(b) $20^{\circ}$
(c) $100^{\circ}$
(d) $95^{\circ}$
5. In the given figure, angle $x$ is

(a) Reflex angle
(b) Obtuse angle
(c) Acute angle
(d) Straight angle
6. Two angles of a triangle are equal and the third angle is greater than each of these angles by $30^{\circ}$. Angles of the triangle are
(a) $\mathbf{3 0 ^ { \circ }}, \mathbf{3 0 ^ { \circ }}, \mathbf{1 2 0} 0^{\circ}$
(b) $50^{\circ}, 50^{\circ}, 80^{\circ}$
(c) $80^{\circ}, 80^{\circ}, 20^{\circ}$
(d) $60^{\circ}, 60^{\circ}, 60^{\circ}$
7. An exterior angle of a triangle is $115^{\circ}$ and one of its interior opposite angle is $35^{\circ}$. The other two angles are
(a) $65^{\circ}, 80^{\circ}$
(b) $75^{\circ}, 70^{\circ}$
(c) $90^{\circ}, 55^{\circ}$
(d) $85^{\circ}, 60^{\circ}$
8. If the angles of a triangle are in the ratio of 2:3:4. The angles are
(a) $40^{\circ}, 60^{\circ}, 80^{\circ}$
(b) $\mathbf{8 0 ^ { \circ }}, \mathbf{8 0 ^ { \circ }}, \mathbf{2 0 ^ { \circ }}$
(c) $\mathbf{5 0 ^ { \circ }}, \mathbf{3 0}^{\circ}, 100^{\circ}$
(d) $60^{\circ}, 60^{\circ}, 60^{\circ}$
9. One of the angles of a triangle is $65^{\circ}$. If the difference of other two angles is $25^{\circ}$, the remaining two angles are
(a) $45^{\circ}, 70^{\circ}$
(b) $40^{\circ}, 65^{\circ}$
(c) $50^{\circ}, 65^{\circ}$
(d) $30^{\circ}, 55^{\circ}$
10. The sum of the interior angles of a pentagon is
(a) $540^{\circ}$
(b) $720^{\circ}$
(c) $108^{\circ}$
(d) $360^{\circ}$
11. The lines perpendicular to the same line are $\qquad$ to each other.
(a) parallel
(b) intersecting
(c) perpendicular
(d) dependent
12. one angle of a linear pair is double the other one, then their measures are
(a) $60^{\circ}, 120^{\circ}$
(b) $45^{\circ}, 90^{\circ}$
(c) $30^{\circ}{ }^{\circ}, 150^{\circ}$
(d) $30^{\circ}, 60^{\circ}$
13. $\angle P O R=(3 x)^{\circ}$ and $\angle Q O R=(2 x+10)^{\circ}$, then the value of $x$ so that $\angle P O Q$ is a straight line is
(a) $34^{\circ}$
(b) $24^{\circ}$
(c) $28^{\circ}$
(d) $54^{\circ}$
14. $P Q$ and $R S$ are two intersecting lines. If $\angle P O S=50^{\circ}$, then $\angle P O R$

(A) $120^{\circ}$
(b) $140^{\circ}$
(c) $130^{\circ}$
(d) $150^{\circ}$
15. In figure, $\angle 1=60^{\circ}$ and $\angle 2=\frac{2}{3}$ of a right angle, then $I$ and $m$ will be
(a) intersecting lines
(b) non-parallel lines
(c) parallel lines
(d) none of these

16. If $P Q\left|\mid R S, \angle M X Q=140^{\circ}\right.$ and $\angle M Y R=45^{\circ}$, then the value of $\angle X M Y$ will be
(a) $85^{\circ}$
(b) $95^{\circ}$
(c) $80^{\circ}$
(d) $90^{\circ}$

17. If $A B\left|\mid C D, \angle A P R=60^{\circ}\right.$ and $\angle P Q D=126^{\circ}$, then the value of ' $y^{\prime}$ is
(a) $76^{\circ}$
(b) $66^{\circ}$
(c) $56^{\circ}$
(d) $86^{\circ}$

18. If $A B||C D, C D|| E F$ and $y: z=4: 5$. then the value of $x$ will be
(a) $20^{\circ}$
(b) $40^{\circ}$
(c) $100^{\circ}$
(d) $80^{\circ}$
19. Each angle of an equilateral triangle is

(a) $45^{\circ}$
(b) $60 "$
(c) 55
(d) $70^{\circ}$
20. If one of the angles of a triangle is $130^{\circ}$, then the angle between the bisectors of the other two angles can be
(a) $50^{\circ}$
(b) $145^{\circ}$
(c) $65^{\circ}$
(d) $155^{\circ}$
21. In the figure $\angle C A D=110^{\circ} \quad A E \| B C$ and $A E$ bisects $\angle C A D$, then
(a) $65^{\circ}$
(b) $45^{\circ}$
(c) $55^{\circ}$
(d) $75^{\circ}$

22. In figure, BO and CO are the bisectors of $\angle \mathrm{CBE}$ and $\angle B C F$ respectively. $\angle B A C=100^{\circ}, \angle A C B=40^{\circ}$, then the value of $x$ is
(a) $40^{\circ}$
(b) $60^{\circ}$
(c) $50^{\circ}$
(d) $70^{\circ}$

23. If $P T \perp O R$ and $P S$ is the bisector of $\angle Q P R$. If $\angle Q=65^{\circ}$ and $\angle R=33^{\circ}$, then $x$ is
(a) $32^{\circ}$
(b) $22^{\circ}$
(c) $16^{\circ}$
(d) $24^{\circ}$

24. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is $\qquad$ triangle.
(a) an isosceles
(b) an equilateral
(c) an obtuse
(d) a right
25. If $A B|\mid C D$ then $x$ is
(a) $39^{\circ}$
(b) $57^{\circ}$
(c) $93^{\circ}$
(d) $30^{\circ}$
26. If $A B|\mid C D$, then $x$ is
(a) $385^{\circ}$
(b) $70^{\circ}$
(c) $285^{\circ}$
(d) $100^{\circ}$

27. The greatest angle of a triangle is $30^{\circ}$ more than the least and the third angle is $15^{\circ}$ less than the greatest. Then the angles of the triangle are.
(a) $40^{\circ}, 60^{\circ}, 80^{\circ}$
(b) $45^{\circ}, 60^{\circ}, 75^{\circ}$
(c) $50^{\circ} 50^{\circ}, 80^{\circ}$
(d) $30^{\circ}, 60^{\circ}$, $90^{\circ}$
28. In the figure, lines $X Y$ and $M N$ intersect at $O$. if $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, then $c$ is
(a) $126^{\circ}$
(b) $116^{\circ}$
(c) $106^{\circ}$
(d) $96^{\circ}$

29. In the figure $\angle P O R: \angle R O Q=5: 7$ then $\angle S O Q$ is
(a) $105^{\circ}$
(b) $75^{\circ}$
(c) $50^{\circ}$
(d) $30^{\circ}$


30 An exterior angle of a triangle is $105^{\circ}$ and its two interior opposite angles are equal each of these equal angle is
(a) $37.5^{\circ}$
(b) $72.5^{\circ}$
(c) $52.5^{\circ}$
(d) $75^{\circ}$

## CREATIVE AND CRITICAL THINKING QUESTION

Q1. Harikrishna and Himadri are observing the flower petal given in figure (a) Harikrishnaasked Himadri that the flower petals are following some mathematical pattern as given in figure (b). They have some questions for this pattern, help these two kids to solve their questions


Figure (a)


Figure (b)

Q1. How many line segment are there in diagram (b) ?
(a) 6
(b) 9
(c) 12
(d) 10

Q2. How many vertices are there in figure (b) ?
(a) 6
(b) 9
(c) 12
(d) 10

Q3. Line segment AP, CR and BQ are called $\qquad$
(a) linear
(b) concurrent
(c) congruent
(d) parallel

Q4.line segment parallel to $P Q$ is
(a)AB
(b) RQ
(c) RP
(d) AC

Q5. If point $O$ is a centre of the circle then diameter of the circle is
(a) AB
(b) $Q R$
(c) $A P$
(d) AC

Q2. In the school play ground eight students of class $9^{\text {th }}$ are playing a game during sports period they are standing on the points given by English alphabets as given in the following figure. Ghreesa is observing the students and thinking about it. And trying to solve the following questions .


Q1. How many quadrilateral are there in this diagram ?
(a)3
(b) 4
(c) 5
(d) 6

Q2. Corresponding angle of angle $\angle A B C$ is
(a) $\angle \mathrm{HCD}$
(b) $\angle \mathrm{GHE}$
(c) $\angle \mathrm{GFE}$
(d) $\angle B A H$

Q3. Alternate angle of angle $\angle \mathrm{FGH}$ is
(b) $\angle \mathrm{HCB}$
(b) $\angle \mathrm{GHE}$
(c) $\angle \mathrm{GFE}$
(d) $\angle B A H$

Q4. Linear pair angle of $\angle \mathrm{GHE}$ is
(a) $\angle E H C$
(b) $\angle \mathrm{GFE}$
(c) $\angle A B C$
(d) $\angle B C H$

Q5. Measurement of $\angle A B C$
(a) $30^{0}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $120^{\circ}$

Q3. A route from place $A$ to place $C$ is shown in the figure . to avoid traffic on the highway $A M$, a road is cut through $S$ via $T$ to reach $C$ by authorities, Highway AM parallel to Highway CD if $\angle \mathrm{MST}=125^{\circ}$, $\angle C U T=55^{\circ}$. Give the answer of following question using this information.


Q1. The measurement of $\angle A S T$ is ?
(a) $55^{0}$
(b) $125^{\circ}$
(c) $180^{\circ}$
(d) $90^{\circ}$

Q2. The measurement of $\angle T U D$ is ?
(a) $55^{0}$
(b) $125^{0}$
(c) $180^{\circ}$
(d) $90^{\circ}$

Q3. The measurement of $\angle S T U$ is ?
(a) $55^{0}$
(b) $125^{\circ}$
(c) $110^{\circ}$
(d) $90^{\circ}$

Q4. If $\angle S M D=90^{\circ}$ then measurement of $\angle U D M$ is
(a) $55^{0}$
(b) $125^{0}$
(c) $110^{0}$
(d) $90^{\circ}$

Q5. The measurement of Reflex $\angle S T U$ is ?
(a) $155^{\circ}$
(b) $250^{\circ}$
(c) $110^{\circ}$
(d) $180^{\circ}$

## CHAPTER - 12 HERON'S FORMULA

## GIST OF CHAPTER

- Area of a triangle $=\frac{1}{2} x$ base $x$ height sq. units.
- Heron's formula for the area of a triangle, whose sides are $a, b$ and $c$ units, s-semi-perimeter $=\frac{a+b+c}{2}$

Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ sq. units.

- Area of a right triangle $=\frac{1}{2} \times b \times$ a sq units.
where $b$ and $a$ are two sides of a right triangle.
- Area of an equilateral triangle whose sides are 'a' units

Area $=\frac{\sqrt{3}}{4} a^{2}$ sq. units.

- Altitude of an equilateral triangle whose sides are 'a' units

Altitude $=\frac{\sqrt{3}}{2}$ a units.

- Area of an isosceles triangle $=\frac{a}{2} \sqrt{x^{2}-\frac{a^{2}}{4}}$ sq. units where $A B=A C=x$ and $B C=a$ units.
- Perimeter of rhombus $=\mathbf{4} \mathbf{x}$ side.
- Area of rhombus $=\frac{1}{2} \times$ product of its two diagonals.
- Area of trapezium $=\frac{1}{2} \times$ sum of parallel sides distance between them

Area of trapezium $=\frac{1}{2} \times(a+b) \times h$ sq. units


## MULTIPLE CHOICE QUESTIONS

1. The semi-perimeter of the triangle is $\mathbf{6 c m}$. If sides are of length $\mathbf{3 c m}, 4 \mathrm{~cm}$ and 5 cm , then area of triangle is
(a) 6 sq. cm
(b) 7 sq cm
(c) $5 \mathrm{sq} . \mathrm{cm}$
(d) $8 \mathrm{sq} . \mathrm{cm}$
2. The area (in square units) of an isosceles triangle whose base is 'a' and equal sides are of length ' $b$ ' is
(a) $\frac{a}{4} \sqrt{4 b^{2}-a^{2}}$
(b) $\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$
(c) $\frac{b}{4} \sqrt{4 a^{2}-b}$
(d) $\frac{a}{2} \sqrt{4 b^{2}-a^{2}}$
3. Area of an equilateral triangle with side $a$ is
(a) $\frac{\sqrt{3}}{2} \mathbf{a}^{2}$ sq. units
(b) $\frac{\sqrt{3}}{2}$ a sq. units
(c) $\frac{\sqrt{3}}{4} a^{2}$ sq. units
(d) $\frac{\sqrt{3}}{4} a^{2}$ sq. units
4. Area of triangle with sides $a, b, c$ and semi-perimeters is given as
(a) $\sqrt{\mathbf{s}(\mathbf{s}-\mathbf{a})\{\mathbf{s}-\mathbf{b})\{\mathbf{s}-\mathbf{c})}$
(b) $\frac{1}{2}(a+b+c)$
(c) $\frac{1}{2}(2 s+a)$
(d) none of these
5. The longer side of a rectangular hall is $\mathbf{2 4} \mathrm{m}$, and the length of its diagonal is $\mathbf{2 6 ~ \mathrm { m }}$. The semi-perimeter of $\triangle A B C$ is
(a) 60 m
(b) 40 m
(c) 30 m
(d) 42 m
6. The height of an equilateral triangle measure 9 cm . Its area is (take $\sqrt{3}=1.732$ )
(a) $46.76 \mathrm{~cm}^{2}$
(b) $40.76 \mathrm{~cm}^{2}$
(c) $42.42 \mathrm{~cm}^{2}$
(d) $43.2 \mathrm{~cm}^{2}$
7. The side of an equilateral triangle, whose area is $\sqrt{3} \mathrm{~cm}^{2}$ is
(a) 8 cm
(b) $\mathbf{2 ~ c m}$
(c) 4 cm
(d) 16 cm
8. Three sides of a triangle are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Its area is given by
(a) $96 \mathrm{sq} . \mathrm{cm}$
(b) 48 sq. cm
(c) $\sqrt{24}$
sq. cm
(d) $\mathbf{2 4} \mathbf{~ s q . ~ c m ~}$
9.The sides of a triangle are in the ratio $3: 5: 7$. If the perimeter of the triangle is 60 cm , then its area is
(a) $60 \sqrt{3} \mathrm{sq} . \mathrm{cm}$
(b) $30 \sqrt{3}$ sq. cm
(c) $15 \sqrt{3} \mathrm{sq} . \mathrm{cm}$
(d) $120 \sqrt{3}$ sq. cm
9. An umbrella is made by stitching 12 triangular pieces of cloth, each measuring $50 \mathrm{~cm} \times 20 \mathrm{~cm} \times 50 \mathrm{~cm}$. The area of the cloth used in it is
(a) $58883 \mathrm{~cm}^{2}$
(b) $5860 \mathrm{~cm}^{2}$
(c) $5879 \mathrm{~cm}^{2}$
(d) $5813 \mathrm{~cm}^{2}$
10. The area of an isosceles triangle is 12 sq cm . If one of the equal sides is 5 cm , then the length of the base is the equal
(a) 4 cm
(b) 6 cm
(c) 8 cm
(d) both b and c
11. The area of a triangle whose sides are $8 \mathrm{~cm}, 19 \mathrm{~cm}$ and 15 cm is
(a) $96 \mathrm{sq} . \mathrm{cm}$
(b) $6 \sqrt{91} \mathrm{sq} \mathrm{cm}$
(c) $86 \mathrm{sq} . \mathrm{cm}$
(d) $12 \sqrt{91} \mathrm{sq} \mathrm{cm}$
12. The sides of a triangle are in the ratio of 12:17:25. If the perimeter of the triangle is 540 cm , then its longest side is
(a) $\mathbf{1 7 0} \mathrm{cm}$
(b) 120 cm
(c) 250 cm
(d) 220 cm
13. The perimeter of an isosceles triangle is 30 cm . If one of the equal side is 12 cm , then the length of the base is
(a) 8 cm
(b) 6 cm
(c) 9 cm
(d) 12 cm
14. The perimeter of an equilateral triangle is $\mathbf{1 8 0} \mathbf{~ c m}$. its area is
(a) 900 sq cm
(b) $900 \sqrt{2} \mathrm{sq} \mathrm{cm}$
(c) $900 \sqrt{3} \mathrm{sq} \mathrm{cm}$
(d) 920 sq cm
15. If $\angle B=90^{\circ}, B C=40 \mathrm{~m}, A B=9 \mathrm{~m} \quad A D=28 \mathrm{~m}$ and $D C=15 \mathrm{~m}$, then the area of $\triangle A D C$ is
(a) $112 \mathrm{~m}^{2}$
(b) $126 \mathrm{~m}^{2}$
(c) $128 \mathrm{~m}^{2}$
(d) $154 \mathrm{~m}^{2}$
16. The base of a right triangle is 8 cm and hypotenuse is 17 cm s
(a) $60 \mathrm{~cm}^{2}$
(b) $60 \mathrm{~cm}^{2}$
(c) $48 \mathrm{~cm}^{2}$
(d) $80 \mathrm{~cm}^{2}$
17. An isosceles right mangle has area $8 \mathrm{sq} . \mathrm{cm}$. The length of its hypotenuse is
(a) $\sqrt{32} \mathrm{~cm}$
(b) $\sqrt{16} \mathrm{~cm}$
(c) $\sqrt{48} \mathrm{~cm}$
(d) $\sqrt{24} \mathrm{~cm}$
18. The perimeter of an equilateral triangle is 90 m Its area is
(b) $10 \sqrt{3} \mathrm{~m}^{2}$
(d) $225 \sqrt{3} \mathrm{~m}^{2}$
(c) $20 \sqrt{3} \mathrm{~m}^{2}$
(d) $100 \sqrt{3} \mathrm{~m}^{2}$
19. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long, its area is.
(a) $\mathbf{1 3 2 2}$ sq. cm
(b) $1311 \mathrm{sq} . \mathrm{cm}$
(c) $\mathbf{1 3 4 4}$ sq. cm
(d) $\mathbf{1 3 9 2}$ sq. cm
20. The area of an equilateral triangle with side $6 \sqrt{3} \mathrm{~cm}$ is
(a) $\mathbf{4 6 . 7 6 4 ~ s q . c m ~}$
(b) $3.468 \mathrm{sq} . \mathrm{cm}$
(c) $0.866 \mathrm{sq} . \mathrm{cm}$
(d) 1.732 sq. cm
21. The length of each side of an equilateral triangle having an area of $12 \sqrt{3} \mathrm{~cm}^{2}$ is
(a) 8 cm
(b) 4 cm
(c) 36 cm
(d) $4 \sqrt{3} \mathrm{~cm}$
22. If the area of an equilateral triangle is $16 \sqrt{3} \mathrm{sq} . \mathrm{cm}$, then the perimeter. of the triangle is
(a) 48 cm
(b) 12 cm
(c) $\mathbf{2 4} \mathrm{cm}$
(d) 306 cm

24 The sides of a triangle are $\mathbf{3 5 c m}, 54 \mathrm{~cm}$ and 61 cm respectively The length of its longest altitude is
(a) $16 \sqrt{5} \mathrm{~cm}$
(b) $10 \sqrt{5} \mathrm{~cm}$
(c) $24 \sqrt{5} \mathrm{~cm}$
(d) $28 \sqrt{5} \mathrm{~cm}$
25. The area of an isosceles triangle having base $\mathbf{2 c m}$ and the length of one of the equal sides 4 cm is
(a) $\sqrt{15} \mathrm{sq} . \mathrm{cm}$
(b) $\sqrt{\frac{15}{2}}$ sq.cm
(c) $2 \sqrt{15} \mathrm{~cm}^{2}$
(d) $4 \sqrt{15} \mathrm{sq} . \mathrm{cm}$
26. The edges of a triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . The cost of painting at the rate of 9 paise per $\mathrm{cm}^{2}$ is
(a) 2.00
(b) 2.48
(c) 2.16
(d) 3.00
27. The area of right angled triangle whose base is 1.2 m and hypotenuse is 3.7 m is
(a) $4.2 \mathrm{~m}^{2}$
(b) $\mathbf{3} \mathbf{m}^{\mathbf{2}}$
(c) $2.1 \mathrm{~m}^{2}$
(d) $6 \mathrm{~m}^{2}$
28. The sides of a triangle are $25 \mathrm{~cm}, 39 \mathrm{~cm}$ and 56 cm , the altitude corresponding to the shortest side is
(a) 32 cm
(b) 40 cm
(c) 33 cm
(d) 33.6 cm
29.The parallel side of a trapezium are $\mathbf{2 5 c m}$ and 11 cm , while its non parallel sides are 15 cm and 13 cm , then the area of trapezium is
(a) $210 \mathrm{~cm}^{2}$
(b) $216 \mathrm{~cm}^{2}$
(c) $500 \mathrm{~cm}^{2}$
(d) $464 \mathrm{~cm}^{2}$
30. In the figure, $\mathrm{DE}=5 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$. The area of the larger triangle is $50 \mathrm{~cm}^{2}$, then the area of the shaded region is
(a) $27.5 \mathrm{~cm}^{2}$
(c) $24 \mathrm{~cm}^{2}$
(b) $30 \mathrm{~cm}^{2}$
(d) $25 \mathrm{~cm}^{2}$


## CREATIVE AND CRITICAL THINKING QUESTION

Q1. A triangular public park $A B C$ has sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and 50 m . A gardener has to put a fence all around it and also plant grass inside. 3 m wide for a gate on one side. Municipal corporation construct a 1 m wide foot path out side the park and 1 m wide flower bed inside the park along with side of park


Q1. What is the perimeter of triangular park ?
(a) 150 m
(b) 200 m
(c) 250 m
(d) 300 m

Q2.What is the Area of triangular park ?
(a) $1352.36 \mathrm{~m}^{2}$
(b) $1452.36 \mathrm{~m}^{2}$
(c) $1552.36 \mathrm{~m}^{2}$
(d) $1652.36 \mathrm{~m}^{2}$

Q3.What is the cost of fencing it with barbed wire at the rate of Rs 20 per metre ?
(a) Rs 5000
(b) Rs 5500
(c) Rs 4500
(d) Rs 5050

Q4. Find the perimeter of foot path
(a) 250 m
(b) $\mathbf{2 5 6} \mathrm{m}$
(c) 260 m
(d) 265 m

Q5. Find the perimeter of inner side of flower bed in the garden
(a) 250 m
(b) $\mathbf{2 5 6} \mathrm{m}$
(c) 244 m
(d) 265 m

Q2. A tortoise is starts walking from point $P$ to point $Q$ and from point $Q$ to point $R$ and point $R$ to point $S$ and point $S$ to again point $P$. and eaten all fruits as given in the diagram.
$P \rightarrow Q \rightarrow R \rightarrow S \rightarrow P$


Q1. Calculate the shortest distance between point $P$ and papaya fruit.
(a) 12 m
(b) 7 m
(c) 19 m
(d) 20 m

Q2. Calculate the distance covered by tortoise from point $P$ to banana fruit.
(a) 12 m
(b) 7 m
(c) 19 m
(d) 20 m

Q3. If tortoise walks from point $P$ to point $Q$ and point $Q$ to point $R$ and point $R$ to point $P$ again. Then calculate the enclosed area.
(a) $40 \mathrm{~cm}^{2}$
(b) $84 \mathrm{~cm}^{2}$
(c) $19 \mathrm{~cm}^{2}$
(d) $25 \mathrm{~cm}^{2}$

Q4. Find the total distance covered by tortoise after eating all fruits and come back on point $P$
(a) 42 m
(b) 44 m
(c) 46 m
(d) 48 m

Q5. Calculate the distance between papaya fruit and apple fruit.
(a) $12 \sqrt{2} \mathrm{~m}$
(b) $24 \sqrt{2} \mathrm{~m}$
(c) $12 \sqrt{3} \mathrm{~m}$
(d) $24 \sqrt{3} \mathrm{~m}$

Q3. A design is made on a rectangular tile of dimensions 50 cm X 70 cm as shown in the given diagram. The design shows 8 triangles, each of side 26 cm , 17 cm , and 25 cm . Find the total area of the design and the remaining area of tile.


Q1. How many triangles are there in the diagram?
(a) 4
(b) 6
(c) 8
(d) 10

Q2. Area of given rectangle is
(a) $3000 \mathrm{~cm}^{2}$
(b) $3500 \mathrm{~cm}^{2}$
(c) $1200 \mathrm{~cm}^{2}$
(d) $2000 \mathrm{~cm}^{2}$

Q3. Find the Perimeter of rectangular tile.
(a) 280 cm
(b) 200 cm
(c) 120 cm
(d) 240 cm

Q4. Find the area of each triangular region .
(a) $240 \mathrm{~cm}^{2}$
(b) $204 \mathrm{~cm}^{2}$
(c) $420 \mathrm{~cm}^{2}$
(d) $402 \mathrm{~cm}^{2}$

Q5. Find the area of each kite shape.
(a) $408 \mathrm{~cm}^{2}$
(b) $400 \mathrm{~cm}^{2}$
(c) $240 \mathrm{~cm}^{2}$
(d) $240 \mathrm{~cm}^{2}$

## Class IX Mathematics <br> Chapter 14 Statistics

## Data

The facts or figures, which are numerical or otherwise, collected with a definite purpose are called data.

## Kinds of Data

Primary data, Secondary data, Raw data, Array, Ungrouped data, Grouped data.

## Representation of data

Frequency distribution table, Pictograph, Pie chart, Bar graph, Histogram
Kinds of class intervals

| Continuous Classes |  |  |  |  |  |  | Takes value |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| True LL | LL | Class | UL | True UL | Class Mark | Class Size | from | To |  |
| 0 | 0 | $\mathbf{0 - 1 0}$ | 10 | 10 | 5 | 10 | 0 | 9.9 |  |
| 10 | 10 | $\mathbf{1 0 - 2 0}$ | 20 | 20 | 15 | 10 | 10 | 19.9 |  |
| 20 | 20 | $\mathbf{2 0 - 3 0}$ | 30 | 30 | 25 | 10 | 20 | 29.9 |  |
| 30 | 30 | $\mathbf{3 0 - 4 0}$ | 40 | 40 | 35 | 10 | 30 | 39.9 |  |
| 40 | 40 | $\mathbf{4 0 - 5 0}$ | 50 | 50 | 45 | 10 | 40 | 49.9 |  |
| Non Continuous Classes |  |  |  |  |  |  |  | Takes value |  |
| True LL | LL | Class | UL | True UL | Class Mark | Class Size | from | To |  |
| -0.5 | 0 | $0-9$ | 9 | 9.5 | 4.5 | 10 | 0 | 9 |  |
| 9.5 | 10 | $10-19$ | 19 | 19.5 | 14.5 | 10 | 10 | 19 |  |
| 19.5 | 20 | $20-29$ | 29 | 29.5 | 24.5 | 10 | 20 | 29 |  |
| 29.5 | 30 | $30-39$ | 39 | 39.5 | 34.5 | 10 | 30 | 39 |  |
| 39.5 | 40 | $40-49$ | 49 | 49.5 | 44.5 | 10 | 40 | 49 |  |

## Important Formula

Class mark = (Upper limit + Lower limit)/2
Class size = True Upper limit - True Lower limit
Class size $=$ Difference between the upper/lower limits of two consecutive classes
Class size $=$ Difference between the class marks of two consecutive classes
Lower limit = Class mark - half class size
Upper limit = Class mark + half class size
True lower limit of any class=
(LL of the class + UL of the previous class)/2
True upper limit of any class=
(UL of the class + LL of the next class)/2
Bar graph is used to represent an un grouped data.
Histogram is used to represent a grouped data.

## Multiple choice Questions

(a) $\quad($ Lower limit + Upper limit) $/ 2$
(b) $\quad$ (Lower limit - Upper limit)/2
(c) $\quad($ Lower limit + Upper limit)/3
(d) (Lower limit - Upper limit)/3
(a) Ungrouped data
(b) Grouped data
(c) Both Grouped and Ungrouped data
(d) None
$3 \quad$ Histogram is used to represent
(a) Ungrouped data
(b) Grouped data
(c) Both Grouped and Ungrouped data
(d) None
(a) 10 to 20
(b) 10 to 19.9
(c) 9.5 to 20.5
(d) None
(a) 10 to 20
(b) 10 to 19
(c) 9.5 to 20.5
(d) None
(a) Lower limit - Upper limit
(b) Upper limit - Lower limit
(c) Maximum Observation - Minimum Observation
(d) None
(a) Raw data
(b) Grouped data
(c) Ungrouped data
(d) Array

A student recorded the population of some villages as shown below

Village Population
A 450
B 700
C 550
D
350
E 950
The student then represented the data as shown below.


Which of the following would be the scale used on the $y$ - axis?
(a) 1 unit $=10$ people
(b) 1 unit $=50$ people
(c) 1 unit $=100$ people
(d) 1 unit $=500$ people

The bar graph below shows the number of students residing at different hostel buildings in a university.


If the total number of students residing in the hostel buildings is 700, how many students reside in Charlie building?
(a) 90
(b) 135
(c) 180
(d) 225

The bar graph below shows the number of sea animals in a large aquarium.


How many more sea horses are there in the aquarium than clown fishes?
(a) 2
(b) 4
(c) 6
(d) 8

The bar graph shows the annual income of a group of friends.


Who earns the most among the group of friends and how much more does he earn than the one who earns the least?
(a) Vinay; Rs 200000
(b) Vinay; Rs 275000
(c) Guhan; Rs 175000
(d) Guhan; Rs 250000

The histogram below shows the number of visitors in a museum on different number of days:


Which of these is correct about the histogram?
(a) There were about 80-90 visitors for 12 days at the museum.
(b) There were about 60-70 visitors for 5 days at the museum.
(c) There were about 120-140 visitors for 6 days at the museum.
(d) There were about 100-120 visitors for 26 days at the museum

13 The histogram below shows the daily commute time, in minutes, for 18 employees of an office


Which of these is NOT correct about the histogram?
(a) 4 employees take 35-50 minutes to commute to office
(b) 8 employees take 65-95 minutes to commute to office
(c) 6 employees take less than 65 minutes to commute to office.
(d) 4 employees take more than 80 minutes to commute to office

14 The marks obtained by 17 students in a mathematics test (out of 100) are given below:
$91,82,100,100,96,65,82,76,79,90,46,64,72,68,66,48$, 49.

The range of the data is:
(a) 46
(b) 54
(c) 90
(d) 100

15 The class-mark of the class $130-150$ is
(a) 130
(b) 135
(c) 140
(d) 145

16 In a frequency distribution, the mid value of a class is 10 and the width of the class is 6 . The lower limit of the class is
(a) 6
(b) 7
(c) 8
(d) 12

17 The width of each of five continuous classes in a frequency distribution is 5 and the lower class-limit of the lowest class is 10. The upper class-limit of the highest class is
(a) 15
(b) 25
(c) 35
(d) 40

18 Let $m$ be the mid-point and $n$ be the upper class limit of a class in a continuous frequency distribution. The lower class limit of the class is
(a) $2 m+n$
(b) $2 m-n$
(c) $m-n$
(d) $m-2 n$

19 The class marks of a frequency distribution are given as follows: $15,20,25, \ldots$ The class corresponding to the class mark 20 is
(a) $12.5-17.5$
(b) $17.5-22.5$
(c) $18.5-21.5$
(d) 19.5-20.5

In the class intervals $10-20,20-30$, the number 20 is included in
(a) $10-20$
(b) $\quad 20-30$
(c) both the intervals
(d) none of these intervals

21 A grouped frequency table with class intervals of equal sizes using 250-270 ( 270 not included in this interval) as one of the class interval is constructed for the following data:
268, 220, 368, 258, 242, 310, 272, 342, 310, 290, 300, 320, 319, 304, 402, 318, 406, 292, 354, 278, 210, 240, 330, 316, 406, 215, 258, 236.
The frequency of the class $310-330$ is
(a) 4
(b) 5
(c) 6
(d) 7

22 A grouped frequency distribution table with classes of equal sizes using 63-72 (72 included) as one of the class is constructed for the following data:
$30,32,45,54,74,78,108,112,66,76,88,40,14,20,15,35$, $44,66,75,84,95,96,102,110,88,74,112,14,34,44$.
The number of classes in the distribution will be
(a) 9
(b) 10
(c) 11
(d) 12

23 To draw a histogram to represent the following frequency distribution: the adjusted frequency for the class $25-45$ is

| Class | $5-10$ | $10-15$ | $15-25$ | $25-45$ | $45-75$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 12 | 10 | 8 | 15 |

(a) 6
(b) 5
(c) 3
(d) 2

24 The class-mark of the class 140-150 is
(a) 130
(b) 135
(c) 140
(d) 145

Which of the following is not a formula to find the class size of the class intervals with the uniform width?
(a) Class size $=$ True Upper limit - True Lower limit
(b) Class size = Difference between the upper limits of two consecutive classes
(c) Class size = Difference between the class marks of two consecutive classes
(d) None

## Case study based questions <br> (Answer any four sub parts)

The COVID-19 pandemic, also known as the coronavirus pandemic, is an ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China.
During survey, the ages of 80 patients infected by COVID and admitted in the one of the City hospital were recorded and the collected data is represented in the frequency distribution table.

## CORONAVIRUS

COVID-19

## Age (in yrs)

No. of patients

| $5-15$ | 6 |
| :---: | :---: |
| $15-25$ | 11 |
| $25-35$ | 21 |
| $35-45$ | 23 |
| $45-55$ | 14 |
| $55-65$ | 5 |

Based on the information, answer the following questions :
(i) The class interval with highest frequency is
(a) 45-55
(b) 35-45
(c) 25-35
(d) 15-25
(ii) Which age group was affected the least?
(a) 35-45
(b) $25-35$
(c) 55-65
(d) 45-55
(iii) Which age group was affected the most?
(a) 35-45
(b) 25-35
(c) 15-25
(d) 45-55
(iv) How many patients of the age 45 years and above were admitted?
(a) 61
(b) 19
(c) 14
(d) 23
(v) How many patients of the age 35 years and less were admitted?
(a) 17
(b) 38
(c) 61
(d) 41

Anil is a Mathematics teacher in Hyderabad. After Periodic test 3, he asks students to collect the Mathematics marks of all the students of Class IX- A, B and C. A student is able to collect marks from some students. Rekha scored least mark 6 in the class and Ram scored highest marks 59 in the class. He prepares the frequency distribution table using the collected marks and draws Histogram using the table as shown in adjoining figure.

(i) What is the width of the class?
(a) 10
(b) 15
(c) 5
(d) None of these
(ii) What is the total number of students in Histogram?
(a) 50
(b) 60
(c) 65
(d) None of these
(iii) How many students scored $50 \%$ and above marks?
(a) 19
(b) 26
(c) 27
(d) None of these
(iv) How many students scored less than 50\% marks?
(a) 19
(b) 26
(c) 27
(d) None of these
(v) What is the range of the collected marks?
(a) 60
(b) 59
(c) 53
(d) None of these

A group of students decided to make a project on Statistics. They are collecting the heights (in cm ) of their 51 girls of Class IX-A, B and C of their school. After collecting the data, they arranged the data in the following frequency distribution table form:

| Height (in cm) | Number of girls |
| :---: | :---: |
| $135-140$ | 4 |
| $140-145$ | 7 |
| $145-150$ | 18 |
| $150-155$ | 11 |
| $155-160$ | 6 |
| $160-165$ | 5 |

Based on the information, answer the following questions:

(i) The class interval with highest frequency is
(a) 145-150
(b) 150-155
(c) 140-145
(d) 155-160
(ii) What is the width of the class?
(a) 10
(b) 15
(c) 5
(d) none of these
(iii) How many students of the height 150 cm and below are there?
(a) 40
(b) 29
(c) 18
(d) 22
(iv) How many students of the height 145 cm and above are there?
(a) 40
(b) 29
(c) 18
(d) 22
(v) How many students of the height more than 145 cm but less than 155 are there?
(a) 40
(b) 29
(c) 18
(d) 22

A Mathematics teacher asks students to collect the marks of Mathematics in Half yearly exam. She instructed to all the students to prepare frequency distribution table using the data collected. Ram collected the following marks (out of 50) obtained in Mathematics by 60 students of Class IX $21,10,30,22,33,5,37,12,25,42,15,39,26,32,18,27,28$, 19, 29, 35, 31, 24, 36, 18, 20, 38, 22, 44, 16, 24, 10, 27, 39, 28, 49, 29, 32, 23, 31, 21, 34, 22, 23, 36, 24, 36, 33, 47, 48, 50, 39, $20,7,16,36,45,47,30,22,17$.

| Groups | Tally Marks | Frequency |
| :---: | :---: | :---: |
| 0-10 | 11 | 2 |
| 10-20 | NWINT | 10 |
| 20-30 | NKI NXI MNI NXI | 21 |
| 30-40 | ANI NX ONJIIII | 19 |
| 40-50 | NVII | 7 |
| 50-60 | 1 | 1 |
|  | Total | 60 |


(i) How many students scored more than 20 but less than 30 ?
(a) 20
(b) 21
(c) 22
(d) 23
(ii) How many students scored less than 20 marks?
(a) 10
(b) 11
(c) 12
(d) 14
(iii) How many students scored $60 \%$ or more marks?
(a) 20
(b) 25
(c) 26
(d) 27
(iv) What is the class size of the classes?
(a) 10
(b) 5
(c) 15
(d) 20
(v) What is the class mark of the class interval 30-40?
(a) 30
(b) 35
(c) 40
(d) 70

The Class teacher of Class X preparing result analysis of a student. She compares the marks of a student obtained (out of 100) in Class IX (2018-19) and Class X (2019-20) using the double bar graph as shown below:

(i) In which subject has the performance improved the most?
(a) Maths
(b) Social Science
(c) Science
(d) English
(ii) In which subject has the performance deteriorated?
(a) Maths
(b) Social Science
(c) Science
(d) English
(iii) In which subject is the performance at par?
(a) Hindi
(b) Maths
(c) Science
(d) English
(iv) What is the difference in Maths Subject?
(a) 5
(b) 30
(c) 0
(d) 10
(v) What is the percentage of marks obtained by a student in Class X (2019-20)?
(a) $60 \%$
(b) $55 \%$
(c) $54 \%$
(d) $65 \%$

## Answers

1 (a) (Lower limit + Upper limit)/2
2 (a) Ungrouped data
3 (b) Grouped data
4 (b) 10 to 19.9
5 (b) 10 to 19
6 (c) Maximum observation - Minimum observation
7 (d) Array
8 (c) 1 unit $=100$ people
9 (c) 180
10 (b) 4
11 (b) Vinay; Rs 275000
12 (b) There were about 60-70 visitors for 5 days at the museum.
13 (b) 8 employees take 65-95 minutes to commute to office
14 (b) 54
15 (c) 140
16 (b) 7
17 (c) 35
18 (b) $2 m-n$
19 (b) 17.5-22.5
20 (b) 20-30
21 (c) 26
22 (d) 12
23 (d) 2
24 (d) 145
25 (d) None
26 (i) (b)
35-45
(ii) (c)

55-65
(iii) (b)

35-45
(iv) (b)

19
(v) (b) 38

27 (i) (a)
10
(ii) (b)

60
(iii) (c)

27
(iv) (d)
(v) (c)

None
28 (i) (a)
(ii) (c)
(iii) (b)

53
(iv) (a)

145-150
(v) (b)

0
(i) (b) 29

29 (i) (b)
21
(ii) (c) 12
(iii) (d) 27
(iv) (a) 10

|  | (v) | (b) | 35 |
| :--- | :--- | :--- | :--- |
| 30 | (i) | (a) | Maths |
|  | (ii) | (d) | English |
|  | (iii) | (a) | Hindi |
|  | (iv) | (b) | 30 |
|  | (v) | (c) | $54 \%$ |

## Class :9 <br> Triangle <br> MCQ

Q.1.In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then $\angle A$ is equal to:
a) $80^{\circ}$
b) $40^{\circ}$
c) $50^{\circ}$
d) $100^{\circ}$
Q.2.In $\triangle A B C \cong \triangle L K M$, then side of $\triangle L K M$ equal to side $A C$ of $\triangle A B C$ is
a) LK
b) KM
c) LM
d) None
Q.3. All the medians of a triangle are equal in case of a:
a) Equilateral triangle
b) Right angled triangle
c) Scalene triangle
d) Isosceles triangle
Q.4. In a right triangle, the longest side is:
a) Perpendicular
b) Hypotenuse
c) Base
d) None of the above
Q.5. In $\triangle A B C, A B=A C$ and $\angle B=50^{\circ}$. Then $\angle C$ is equal to
a) $40^{\circ}$
b) $50^{\circ}$
c) $80^{\circ}$
d) $130^{\circ}$
Q.6. Which of the following is not a criterion for congruence of triangle?
a) SAS
b) SSS
c) RHS
d) SSA
Q.7. In the given figure, PS is the median then $\angle \mathrm{QPS}$ ?

a) $50^{\circ}$
b) $40^{\circ}$
c) $80^{\circ}$
d) $90^{\circ}$
Q.8. In $\triangle P Q R \cong \triangle E F D$, then $\angle E$
a) $\angle P$
b) $\angle Q$
c) $\angle R$
d) None
Q.9. In the given figure, if the exterior angle is $135^{\circ}$ then $\angle \mathrm{P}$ is:

a) $45^{\circ}$
b) $60^{\circ}$
c) $90^{\circ}$
d) $80^{\circ}$
Q.10. Two sides of a triangle are of length 5 cm and 1.5 cm . The length of the third side of the triangle cannot be:
a) 3.6 cm
b) 4.1 cm
c) 6.9 cm
d) 3.8 cm
Q.11. In the given figure, find PM

a) 3 cm
b) 4 cm
c) 5 cm
d) 2 cm
Q.12. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (see Fig.). Show that $\triangle A B C \cong \triangle A B D$. What can you say about $B C$ and $B D$ ?

a) $B C \neq B D$
b) $B C>B D$
c) $B C<B D$
d) $B C=B D$
Q.13. In the given figure, the congruency rule used in proving $\angle A C D \cong \angle A D B$ is

a) SAS
b) SSS
c) RHS
d) SSA
Q.14. In a triangle $P Q R$ if $\angle Q P R=80^{\circ}$ and $P Q=P R$, then $\angle R$ and $\angle Q$ are
a) $80^{\circ}, 70^{\circ}$
b) $50^{\circ}, 50^{\circ}$
c) $70^{\circ}, 80^{\circ}$
d) $80^{\circ}, 80^{\circ}$
Q.15. In two triangles $A B C$ and $D E F, A B=D E, B C=D F$ and $A C=E F$, then
a) $\triangle A B C \cong \triangle D E F$
b) $\triangle \mathrm{ABC} \triangle \triangle \mathrm{EFD}$
c) $\triangle \mathrm{ABC} \cong \triangle E D F$
d) None
Q.16. If $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$. Then:
a) $\angle A B D=\angle A C D$
b) $\angle A B D>\angle A C D$
c) $\angle A B D<\angle A C D$
d) None
Q.17. If $A B C$ is an equilateral triangle, then each angle equals to:
a) $90^{\circ}$
B) $180^{\circ}$
c) $120^{\circ}$
d) $60^{\circ}$
Q.18. If $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Then:
a) $B D=C D$
b) $B D>C D$
c) $B D<C D$
d) None
Q.19. In $\triangle A B C$ and $\triangle P Q R$ if $\angle A=\angle R, \angle B=\angle P$ and $A B=R P$, then which one of the following congruence conditions applies:
a) SAS
b) $A S A$
c) SSS
d) RHS
Q.20. In triangle $A B C$, if $A B=B C$ and $\angle B=70, \angle A$ will be:
a) $70^{\circ}$
b) $110^{0}$
c) $55^{\circ}$
d) $130^{\circ}$
Q.21. All the medians of a triangle are equal in case of $a$ :
a) Scalene triangle
b) Right angled triangle
c) Equilateral triangle
d) Isosceles triangle
Q.22. In triangles $A B C$ and $P Q R, A B=A C, \angle C=\angle P$ and $\angle B=\angle Q$. The two triangles are:
a) Isosceles but not congruent
b) Isosceles and congruent
c) Congruent but not isosceles
d) Neither congruent nor isosceles
Q.23. In triangles $A B C$ and $D E F, A B=F D$ and $\angle A=\angle D$. The two triangles will be congruent by SAS axiom if:
a) $B C=E F$
b) $A C=D E$
c) $A C=E F$
d) $B C=D E$
Q.24. If in $\triangle P Q R, R Q=P R$ then:
a) $\angle P=\angle R$
b) $\angle P=\angle Q$
c) $\angle Q=\angle R$
d) None of these
Q.25. In triangle $P Q R$ if $\angle Q=120^{\circ}$, then:
a) $P Q$ is the longest side
b) $Q R$ is the longest side
c) $P R$ is the longest side
d) None of these
Q.26. It is given that $\triangle A B C \cong \triangle F D E$ and $A B=5 \mathrm{~cm}, \angle B=40^{\circ}$ and $\angle A=80^{\circ}$. Then which of the following is true?
a) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{~F}=60^{\circ}$
b) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
c) $D E=5 \mathrm{~cm}, \angle E=60^{\circ}$
d) $D E=5 \mathrm{~cm}, \angle \mathrm{D}=40^{\circ}$
Q.27. In $\triangle P Q R$, if $\angle P>\angle Q$, then
a) $\mathrm{QR}>\mathrm{PR}$
b) $P Q>P R$
c) $\mathrm{PQ}<\mathrm{PR}$
d) $\mathrm{QR}<\mathrm{PR}$
Q.28. In triangle $P Q R$ if $P Q=3 \mathrm{~cm}, Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$ then
a) $\angle P>\angle Q>\angle R$
b) $\angle R>\angle P>\angle Q$
c) $\angle Q<\angle P<\angle R$
d) $\angle Q>\angle P>\angle R$
Q.29. If $E$ and $F$ are the midpoints of equal sides $A B$ and $A C$ of a triangle $A B C$.

Then:
a) $B F=A C$
b) $B F=A F$
c) $C E=A B$
d) $B E=C F$
Q.30. In triangles $A B C$ the angles are in ration $2: 3: 5$ than angles of a triangle are:
a) $36^{\circ}, 54^{\circ}, 90^{\circ}$
b) $50^{\circ}, 30^{\circ}, 10^{\circ}$
c) $30^{\circ}, 30^{\circ}, 90^{\circ}$
d) $45^{\circ}, 45^{\circ}, 90^{\circ}$
Q.31. $\triangle A B C$ is an isosceles triangle, $A B=A C, \angle A=120^{\circ}$ and $\angle A C D$ is an exterior angle then the value of $\angle A C D$ is :
a) $120^{\circ}$
b) $150^{\circ}$
c) $140^{\circ}$
d) $130^{\circ}$
Q.32. $\triangle A B C$ is an isosceles triangle in which altitude $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively. Then:
a) $\mathrm{BE}>\mathrm{CF}$
b) $\mathrm{BE}<\mathrm{CF}$
c) $\mathrm{BE}=\mathrm{CF}$
d) None
Q.33. If $\triangle A B C \cong \triangle P Q R$, then which of the following is not true?
a) $A C=P R$
b) $B C=P Q$
c) $Q R=B C$
d) $A B=P Q$
Q.34. Line segment joining the midpoint of any side with the opposite vertex is
a) altitude
b) median
c) perpendicular bisector
d) angle bisector
Q.35. The point of intersection of all the altitudes of a triangle is
a) orthocentre
b) incentre
c) circumcentre
d) centroid
Q.36. The point of intersection of all the medians of a triangle is
a) orthocentre
b) incentre
c) circumcentre
d) centroid
Q.37. The point of intersection of the angle bisector of all internal angles of a triangle is
a) incentre
b) orthocentre
c) circumcentre
d) centroid
Q.38. In a triangle $A B C$, if $2 \angle A=3 \angle B=6 \angle C$, then the measure of $\angle A$ is
a) $75^{\circ}$
b) $30^{\circ}$
c) $60^{\circ}$
d) $90^{\circ}$
Q.39. In a triangle $A B C$, if $\angle A-\angle B=330$ and $\angle B-\angle C=180$, then the measure of $\angle \mathrm{B}$ is
a) $88^{\circ}$
b) $37^{\circ}$
c) $55^{\circ}$
d) $60^{\circ}$
Q.40. . In a triangle $A B C$, if $\angle A-\angle B=330$ and $\angle B-\angle C=180$, then the measure of $\angle \mathrm{C}$ is
a) $60^{\circ}$
b) $37^{\circ}$
c) $55^{\circ}$
d) $99^{\circ}$

## CASE STUDY QUESTION

CLASS :IX
CHAPTER:TRIANGLE
Q.1. Five students $A, B, C, D$ and $E$ are sitting in the open field as shown in the figure such that the distance between $A$ to $B$ and $A$ to $C$ is same. It is also observed that the distance between two students $B$ to $E$ and $C$ to $D$ are also equal on the basis of this information answer the following questions:
Answer any five

Q.(i).In $\triangle A B C$ which two angles will be equal?
a) $\angle A$ and $\angle B$
b) $\angle$ C and $\angle B$
c) $\angle A$ and $\angle C$
d) $\angle A$ and $\angle D$
Q.(ii).What is the difference between BE and DE?
a) $B D$
b) $D E$
c) $A B$
d) AC
Q.(iii).What is the difference between CD and EC?
a) $B D$
b) $D E$
c) AC
d) EC
Q.(iv).What can you say about BD and EC?
a) Both are different
b) $B D$ is larger
c) $B D$ is smaller
d) $\mathrm{BD}=\mathrm{EC}$
Q.(v). By Which criteria we can say $\triangle A B D \cong \triangle A C E$ ?
a) SAS
b) $A S A$
c) SSS
d) RHS
Q.(vi).What Can we say about the distance between $A$ to $D$ and $A$ to $E$ ?
a) $A D>A E$
b) $A D<A E$
c) $A D=A E$
d) None
Q.2.A teacher drawn the figure of many triangle on board and asked the questions about triangles to check their knowledge about the congruence of triangle. These are the figures of different triangles.
Answer any five

Q.(i).The triangles (i) and (ii) are congruent by which criteria?
a) SSS
b) SAS
c) AAS
d) Triangles are not congruent
Q.(ii).The triangles (iii) and (iv) are not congruent by which criteria?
a) RHS
b) SAS
c) AAS
d) SSS
Q.(iii). $\Delta$ EFG and $\Delta \mathrm{JHG}$ are congruent by which criteria?
a) SSS
b) SAS
c) AAS
d) ASA
Q.(iv).In isosceles triangle $A B C$, in which $A B=A C$ and $A D$ is perpendicular on $B C$ $\triangle A D B$ and $\triangle A D C$ are congruent by which criteria?
a) SSS
b) SAS
c) $A S A$
d) RHS
Q.(v).In the figure (Vii) $\triangle P Q R$ and PSR are congruent by which criteria?
a) $A S A$
b) SAS
c) RHS
d) SSS
Q.(vi).Which of the following is not correct?
a) $\triangle \mathrm{ABC} \cong \triangle D E F\{F i g$ (iii) and (iv) $\}$
b) $\triangle \mathrm{EFG} \cong \triangle \mathrm{JHG}\{\mathrm{Fig}$ (v) $\}$
c) $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}\{\mathrm{Fig}$ (vi) $\}$
d) $\triangle P Q R \cong \triangle R S P\{$ Fig (vii) $\}$

## Q. 3.

Once the Maths teacher of class IX told students that today we will prove that the sum of all three angles is $180^{\circ}$. As shown in the figure. He told to draw any triangle $A B C$ in the notebook Further side $B C$ was extended to $D$.
Now the teacher said to draw CE II BA. Further angles were named 1 to 5 as shown in the figure. Now answer the following questions. Answer any five

Q.(i).CE II BA and $A C$ is a transverse line. So $\angle 1$ is equal to
a) $\angle 2$
b) $\angle 3$
c) $\angle 4$
d) $\angle 5$
Q.(ii). $\angle 2$ is equal to Which equal ?
a) $\angle 2$
b) $\angle 3$
c) $\angle 4$
d) $\angle 5$
Q.(iii). What is the value of $\angle 3+\angle 4+\angle 5$ ?
a) $180^{\circ}$
b) $120^{\circ}$
c) $200^{\circ}$
d) $360^{\circ}$
Q.(iv). What is the value of $\angle \mathrm{ACD}=\angle 4+\angle 5$ ?
a) $\angle 3+\angle 5$
b) $\angle 1+\angle 2$
c) $\angle 2+\angle 3$
d) $\angle 3+\angle 4$
Q.(v). What is the value of $\angle 1+\angle 2+\angle 3$ ?
a) $\angle 3+\angle 4+\angle 5=180^{\circ}$
b) $360^{\circ}$
c) $\angle 3+\angle 4=180^{\circ}$
d) $\angle 3+\angle 5=200^{\circ}$
Q.(vi). What will be angle $\angle A C D$ ?
a) $\angle 3+\angle 5$
b) $\angle 3+\angle 2$
c) $\angle 1+\angle 3$
d) $\angle 1+\angle 2$

## TRIANGLE

## GIST OF THE CHAPTER

$>$ Triangle: A closed figure formed by three intersecting lines is called a triangle. A triangle has three sides, three angles and three vertices.


Triangle $A B C$, denoted as $\triangle A B C$.
$A B, B C, C A$ are the three sides,
$\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ are the three angles and
$A, B, C$ are three vertices.
> Congruence of Triangles: Two triangles are congruent if the sides and angles of one triangle are equal to the corresponding sides and angles of the other triangle.
$>$
If $\triangle P Q R$ is congruent to $\triangle A B C$, we write $\triangle P Q R=\triangle A B C$.

Note: Congruent triangles corresponding parts are equal and we write in short 'CPCT' for Corresponding Parts of Congruent Triangles.
$>$ Criteria for Congruence of Triangles.

- SAS congruence rule: Two triangles are congruent if two sides and the included angle of one triangle are equal to the sides and the included angle of the other triangle.
- ASA congruence rule: Two triangles are congruent if two angles and the included sides of one triangle are equal to two angles and the included side of another triangle.
- AAS congruence rule: Two triangles are congruent if any two pairs of angles and one pair of corresponding sides are equal.
- SSS congruence rule: Two triangles are congruent if three sides of one triangle are equal to the sides of the other triangle.
- RHS congruence rule: If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangles, then the two triangles are congruent.


## Properties of a Triangle

- Isosceles triangle: A triangle in which two sides are equal is called an isosceles triangle. So, $\triangle A B C$ is an isosceles triangle with $A B=A C$.

- Theorem 1: Angles opposite to equal sides of an isosceles triangle are equal. i.e., $\angle B=\angle C$
- Theorem 2: The sides opposite to equal angles of a triangle are equal. i.e., AB = AC
> Inequalities in a Triangle
- If two sides of a triangle are unequal, the angle opposite to the longer side is larger (or greater).
- In any triangle, the side opposite to the larger (or greater) angle is longer (converse of (i)).
- The sum of any two sides of a triangle is greater than the third side, i.e., $\mathrm{AB}+$ $B C>C A$.

