# KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION 

SUBJECT: MATHEMATICS
CLASS: XII

TERM-1
STUDENT SUPPORT MATERIAL

## CHIEF PATRON

$$
\begin{aligned}
& \text { Dr. JAIDEEP DAS, } \\
& \text { DEPUTY COMMISSIONER, } \\
& \text { KVS, AHMEDABAD REGION } \\
& \text { PATRON } \\
& \text { SMT. SHRUTI BHARGAVA, } \\
& \text { ASSISTANT COMMISSIONER, } \\
& \text { KVS, AHMEDABAD REGION }
\end{aligned}
$$

## UNDER THE SUPERVISION OF

## SHRI MOHAN CHANDRA SATYAWALI,

 PRINCIPAL,KENDRIYA VIDYALAYA NO.1, SECTOR-3 GANDHINAGAR

CONTENT DEVELOPEMENT TEAM

| S NO | K V NAME | NAME OF TEACHER |
| :--- | :--- | :--- |
| 1 | K V HIMMAT NAGAR | MR ABHISHEK |
| 2 | K V INS VALSURA | RAJENDRA PARMAR |
| 3 | K V SEC 30 GANDHINAGAR | SHILPA TANEJA |
| 4 | KV NO 3 AFS MAKARPURA VADODARA | L S RAWAT |
| 5 | K V KRIBHCO SURAT | SHIRIN PANDYA |
| 6 | K V MEHSANA | SUMATI KAUSHIK |
| 7 | K V C R P F GANDHINAGAR | BHAVNA SUTARIYA |

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION TERM - 1 MATHS CONTENT CLASS: XII CHAPTER : RELATION AND FUNCTION

| Q1 | The function $f: A \rightarrow B$ defined by $f(x)=4 x+7, x \in R$ is <br> (a) one-one <br> (b) Many-one <br> (c) Odd <br> (d) Even |
| :---: | :---: |
| Q2 | The number of bijective functions from set $A$ to itself when $A$ contains 6 elements is <br> (a) 6 <br> (b) $(6)^{2}$ <br> (c) 6 ! <br> (d) $2^{6}$ |
| Q3 | Let $L$ denote the set of all straight lines in a plane. Let a relation $R$ be defined by $I R m$ if and only if $I$ is perpendicular to $m \forall I, m \in L$. Then $R$ is <br> (a) reflexive only <br> (b) Symmetric only <br> (c) Transitive only <br> (d) Equivalence relation |
| Q4 | Let N be the set of natural numbers and the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $f(n)=2 n+3 \forall n \in N$. Then $f$ is <br> (a) injective <br> (b) surjective <br> (c) bijective <br> (d) None of these |
| Q 5 | The function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is <br> (a) Onto <br> (b) Not onto <br> (c) Not one-one <br> (d) None of these |


| Q 6 | Let $f(x)=(x-1) /(x+1)$, then $f(f(x))$ is <br> (a) $1 / x$ <br> (b) $-1 / x$ <br> (c) $1 /(x+1)$ <br> (d) $1 /(x-1)$ |
| :---: | :---: |
| Q 7 | Set $A$ has 3 elements and the set $B$ has 4 elements. Then the number of injective mappings that can be defined from $A$ to $B$ is <br> (a) 144 <br> (b) 12 <br> (c) 24 <br> (d) 64 |
| Q 8 | The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) 5 |
| Q 9 | Let us define a relation $R$ in $R$ as $a R b$ if $a \geq b$. Then $R$ is <br> (a) an equivalence relation <br> (b) reflexive, transitive but not symmetric <br> (c) symmetric, transitive but not reflexive <br> (d) neither transitive nor reflexive but symmetric |
| Q10 | Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1$, $2),(2,3),(1,3)\}$. Then $R$ is <br> (a) reflexive but not symmetric <br> (b) reflexive but not transitive <br> (c) symmetric and transitive <br> (d) neither symmetric, nor transitive |
| Q11 | Let $A=\{1,2,3, \ldots . n\}$ and $B=\{a, b\}$. Then the number of surjections from $A$ into $B$ is <br> (a) $2^{n}$ <br> (b) $2^{n}-2$ <br> (c) $2^{n}-1$ <br> (d) none of these |
| Q12 | Let $f: R \rightarrow R$ be defined by $f(x)=1 / x, \forall x \in R$. Then $f$ is (a) one-one |


|  | (b) onto <br> (c) bijective <br> (d) $f$ is not defined |
| :---: | :---: |
| Q13 | Which of the following functions from $Z$ into $Z$ are bijective? <br> (a) $f(x)=x^{3}$ <br> (b) $f(x)=x+2$ <br> (c) $f(x)=2 x+1$ <br> (d) $f(x)=x^{2}+1$ |
| Q14 | Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$. Then, pre-images of 17 and -3 , respectively, are <br> (a) $\varphi,\{4,-4\}$ <br> (b) $\{3,-3\}, \varphi$ <br> (c) $\{4,-4\}, \varphi$ <br> (d) $\{4,-4\},\{2,-2\}$ |
| Q15 | For real numbers $x$ and $y$, define $x R y$ if and only if $x-y+\sqrt{ } 2$ is an irrational number. Then the relation $R$ is <br> (a) reflexive only <br> (b) Symmetric only <br> (c) Transitive only <br> (d) None of these |
| Q16 | Consider the non-empty set consisting of children in a family and a relation $R$ defined as $a R b$ if $a$ is brother of $b$. Then $R$ is <br> (a) symmetric but not transitive <br> (b) transitive but not symmetric <br> (c) neither symmetric nor transitive <br> (d) both symmetric and transitive |
| Q17 | If a relation $R$ on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then $R$ is <br> (a) reflexive <br> (b) Symmetric <br> (c) Transitive <br> (d) None of these |
| Q18 | Let $R$ be a relation on the set $N$ of natural numbers denoted by $n R m \Leftrightarrow n$ is a factor of $m$ (i.e. $n \mid m$ ). Then, $R$ is |


|  | (a) Reflexive and symmetric <br> (b) Transitive and symmetric <br> (c) Equivalence <br> (d) Reflexive, transitive but not symmetric |
| :---: | :---: |
| Q19 | Let $S=\{1,2,3,4,5\}$ and let $A=S \times S$. Define the relation $R$ on $A$ as follows: <br> ( $a, b$ ) $R(c, d$ ) iff ad $=c b$. Then, $R$ is <br> (a) reflexive only <br> (b) Symmetric only <br> (c) Transitive only <br> (d) Equivalence relation |
| Q20 | Let R be the relation "is congruent to" on the set of all triangles in a plane is <br> (a) reflexive <br> (b) symmetric <br> (c) symmetric and reflexive <br> (d) equivalence |
| Q21 | Total number of equivalence relations defined in the set $S=\{a, b, c\}$ is <br> (a) 5 <br> (b) 3 ! <br> (c) 23 <br> (d) 33 |
| Q22 | The relation $R$ is defined on the set of natural numbers as $\{(a, b): 2 a=b\}$. Then, $R$ is given by <br> (a) $\{(2,1),(4,2),(6,3), \ldots$. <br> (b) $\{(1,2),(2,4),(3,6), \ldots \ldots .$. <br> (c) $R$ is not defined <br> (d) None of these |
| Q23 | Let $X=\{-1,0,1\}, Y=\{0,2\}$ and a function $f: X \rightarrow Y$ defined by $y=2 x^{4}$, is <br> (a) one-one onto <br> (b) one-one into <br> (c) many-one onto <br> (d) many-one into |


| $\begin{aligned} & \mathrm{Q} \\ & 24 \end{aligned}$ | Let $g(x)=x^{2}-4 x-5$, then <br> (a) $g$ is one-one on $R$ <br> (b) $g$ is not one-one on $R$ <br> (c) g is bijective on R <br> (d) None of these |
| :---: | :---: |
| $\begin{aligned} & \mathrm{Q} \\ & 25 \end{aligned}$ | The mapping $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is given by $\mathrm{f}(\mathrm{n})=1+\mathrm{n}^{2}, \mathrm{n} \in \mathrm{N}$ when N is the set of natural numbers is <br> (a) one-one and onto <br> (b) onto but not one-one <br> (c) one-one but not onto <br> (d) neither one-one nor onto |
| $\begin{aligned} & \mathrm{Q} \\ & 26 \end{aligned}$ | The function $f: R \rightarrow R$ given by $f(x)=x^{3}-1$ is <br> (a) a one-one function <br> (b) an onto function <br> (c) a bijection <br> (d) neither one-one nor onto |
| $\begin{aligned} & \mathrm{Q} \\ & 27 \end{aligned}$ | Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ is a function defined by $f(x)=x\|x\|$ then $f$ is <br> (a) a bijection <br> (b) injection but not surjection <br> (c) surjection but not injection <br> (d) neither injection nor surjection |
| $\begin{aligned} & \mathrm{Q} \\ & 28 \end{aligned}$ | The domain of the function $f(x)=\frac{1}{\sqrt{\{\sin x\}}\}\{\sin (\boldsymbol{\pi}+\mathrm{x})\}}$ where $\}$ denotes fractional part, is <br> (a) $[0, ~ п]$ <br> (b) $(2 n+1) \pi / 2, n \in Z$ <br> (c) $(0, \pi)$ <br> (d) None of these |
| $\begin{aligned} & \mathrm{Q} \\ & 29 \end{aligned}$ | Range of $f(x)=\sqrt{(1-\boldsymbol{\operatorname { c o s }} x) \sqrt{(1-\boldsymbol{\operatorname { c o s } x}) \sqrt{(1-\boldsymbol{\operatorname { c o s } x ) \ldots \ldots \infty}}}}$ <br> (a) $[0,1]$ <br> (b) $(0,1)$ <br> (c) $[0,2]$ <br> (d) $(0,2)$ |


| $\begin{aligned} & \mathrm{Q} \\ & 30 \end{aligned}$ | The greatest integer function $f(x)=[x]$ is <br> (a) One-one <br> (b) Many-one <br> (c) Both (a) \& (b) <br> (d) None of these |
| :---: | :---: |
|  | CASE STUDY: 1 <br> Anu and Chhutki are playing Ludo at home during Covid-19. While rolling the dice, Anu's sister Nikki observed and noted that the possible outcomes of the throw every time belong to set $\{1,2,3,4,5,6\}$. Let $A$ be the set of players while $B$ be the set of all possible outcomes. <br> $A=\{A, C\}, B=\{1,2,3,4,5,6\}$ |
| Q 1 | Let $R: B \rightarrow B$ be defined by $\mathrm{R}=\{(x, y): y$ is divisible by $x\}$ is <br> a. Reflexive and transitive but not symmetric <br> b. Reflexive and symmetric and not transitive <br> c. Not reflexive but symmetric and transitive <br> d. Equivalence |
| Q 2 | Nikki wants to know the number of functions from A to B. How many number of functions are possible? |


|  | a. $6^{2}$ <br> b. $2^{6}$ <br> C. 6! <br> d. $2^{12}$ |
| :---: | :---: |
| Q 3 | Let $R$ be a relation on $B$ defined by $R=\{(1,2),(2,2),(1,3),(3,4),(3,1)$, $(4,3),(5,5)\}$. Then $R$ is <br> a. Symmetric <br> b. Reflexive <br> c. Transitive <br> d. None of these |
| Q 4 | Nikki wants to know the number of relations possible from A to B. How many numbers of relations are possible? <br> a. $6^{2}$ <br> b. $2^{6}$ <br> C. 6 ! <br> d. $2^{12}$ |
| Q 5 | Let $R: B \rightarrow B$ be defined by $\mathrm{R}=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then $R$ is <br> a. Symmetric <br> b. Reflexive and Transitive <br> c. Transitive and symmetric <br> d. Equivalence |
|  | CASE STUDY: 2 <br> An organization conducted bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets $B$ and $G$ with these participants for his college project. <br> Let $B=\{b 1, b 2, b 3\} \quad G=\{g 1, g 2\}$ where $B$ represents the set of boys selected and G the set of girls who were selected for the final race. <br> Ravi decides to explore these sets for various types of relations and functions |


|  |  |
| :---: | :---: |
| Q 1 | Ravi wishes to form all the relations possible from $B$ to $G$. How many such relations are possible? <br> a. $2^{5}$ <br> b. $2^{6}$ <br> C. 0 <br> d. $2^{3}$ |
| Q 2 | Let $\mathrm{R}: \mathrm{B} \rightarrow \mathrm{B}$ be defined by $\mathrm{R}=\{(x, y): x$ and y are students of same sex\}, Then this relation $R$ is $\qquad$ <br> a. Equivalence <br> b. Reflexive only <br> c. Reflexive and symmetric but not transitive <br> d. Reflexive and transitive but not symmetric |
| Q 3 | Ravi wants to know among those relations, how many functions can be formed from $B$ to $G$ ? <br> a. $2^{2}$ <br> b. $2^{12}$ <br> c. $3^{2}$ <br> d. $2^{3}$ |


| Q 4 | Let $R: B \rightarrow G$ be defined by $\mathrm{R}=\{(\mathrm{b} 1, \mathrm{~g} 1),(\mathrm{b} 2, \mathrm{~g} 2),(\mathrm{b} 3, \mathrm{~g} 1)\}$, then R is $\qquad$ <br> a. Injective <br> b. Surjective <br> c. Neither Surjective nor Injective <br> d. Surjective and Injective |
| :---: | :---: |
| Q 5 | Ravi wants to find the number of injective functions from $B$ to $G$. How many numbers of injective functions are possible? <br> a. 0 <br> b. 2! <br> C. 3! <br> d. 0 ! |
|  | CASE STUDY: 3 <br> Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by $y=x^{2}$. Answer the following questions using the above information. |
| Q 1 | Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}$ is $\qquad$ <br> a. Neither Surjective nor Injective <br> b. Surjective <br> c. Injective <br> d. Bijective |
| Q 2 | Let $f: N \rightarrow N$ be defined by $f(x)=x^{2}$ is $\qquad$ <br> a. Surjective but not Injective <br> b. Surjective <br> c. Injective <br> d. Bijective |
| Q 3 | Let $\mathrm{f}:\{1,2,3, \ldots.\} \rightarrow\{1,4,9, \ldots$.$\} be defined by f(x)=x^{2}$ is $\qquad$ a. Bijective |


|  | b. Surjective but not Injective <br> c. Injective but Surjective <br> d. Neither Surjective nor Injective |
| :--- | :--- |
| Q 4 | Let $: N \rightarrow R$ be defined by $f(x)=x^{2}$. Range of the function among the <br> following is <br> a. $\{1,4,9,16, \ldots\}$ <br> b. $\{1,4,8,9,10, \ldots\}$ <br> c. $\{1,4,9,15,16, \ldots\}$ <br> d. $\{1,4,8,16, \ldots\}$ |
| Q 5 | The function $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ defined by $f(x)=x^{2}$ is___ <br> a. Neither Injective nor Surjective <br> b. Injective <br> c. Surjective <br> d. Bijective |

## Answers

1. Answer:
(a) one-one
2. Answer:
(c) 106 !
3. Answer:
(b) Symmetric only
4. Answer:
(a) injective
5. Answer:
(a) Onto
6. Answer:
(b) $-1 / x$
7. Answer:
(c) 24
8. Answer:
(d) 5
9. Answer:
(b) reflexive, transitive but not symmetric
10. Answer:
(a) reflexive but not symmetric
11. Answer:
(b) $2^{n}-2$
12. Answer:
(d) $f$ is not defined
13. Answer:
(b) $f(x)=x+2$
14. Answer:
(c) $\{4,-4\}, \varphi$
15. Answer:
(a) reflexive only
16. Answer:
(d) both symmetric and transitive
17. Answer:
(a) transitive
18. Answer:
(d) Reflexive, transitive but not symmetric
19. Answer:
(d) Equivalence relation
20. Answer:
(d) equivalence
21. Answer:
(a) 5
22. Answer:
(b) $\{(1,2),(2,4),(3,6), \ldots \ldots .$.
23. Answer:
(c) many-one onto
24. Answer:
(b) $g$ is not one-one on $R$
25. Answer:
(c) one-one but not onto
26. Answer:
(c) a bijection
27. Answer:
(a) a bijection
28. Answer:
(d) None of these
29. Answer:
(c) $[0,2]$
30. Answer:
(b) Many-one

Case Study 1

## ANSWERS

1. (a) Reflexive and transitive but not symmetric
2. (a) 62
3. (d) None of these three
4. (d) 212
5. (b) Reflexive and Transitive

Case Study 2

## ANSWERS

1. (a) 26
2. (a) Equivalence
3. (d) 23
4. (b) Surjective
5. (a) 0

Case Study 3

## ANSWERS

1. (a) Neither Surjective nor Injective
2. (C) Injective
3. (a) Bijective
4. (a) $\{1,4,9,16, \ldots\}$
5. (a) Neither Injective nor Surjective

NAME OF TEACHER : ABHISHEK GAUR
NAME OF KV : HIMMATNAGAR

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION
TERM - 1 MATHS CONTENT
CLASS: XII MATHEMATICS (041)
CHAPTER:2 INVERSE TRIGONOMETRIC FUNCTIONS

| Q1 | Which of the following is the principal value branch of $\cos ^{-1} \mathrm{x}$ ? <br> (a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ <br> (b) $(0, \pi)$ <br> (c) $[0, \pi]$ <br> (d) $(0, \pi)-\left\{\frac{\pi}{2}\right\}$ |
| :---: | :---: |
| Q2 | Which of the following is the principal value branch of $\operatorname{cosec}^{-1} \mathrm{x}$ ? <br> (a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ <br> (b) $(0, \pi)-\left\{\frac{\pi}{2}\right\}$ <br> (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ <br> (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ |
| Q3 | The value of $\sin ^{-1}\left[\cos \left(\frac{33 \pi}{5}\right)\right]$ is $\qquad$ <br> (a) $\frac{3 \pi}{5}$ <br> (b) $\frac{-7 \pi}{5}$ <br> (c) $\frac{\pi}{10}$ <br> (d) $\frac{-\pi}{10}$ |
| Q4 | The domain of the function $\cos ^{-1}(2 x-1)$ is $\qquad$ <br> (a) $[0,1]$ <br> (b) $[-1,1]$ <br> (c) $[0,1 / 2]$ <br> (d) $[0, \pi]$ |
| Q 5 | The domain of the function defined bysin ${ }^{-1}(\sqrt{\mathrm{x}-1})$ is $\qquad$ <br> (a) $[1,2]$ <br> (b) $[-1,1]$ <br> (c) $[0,1]$ <br> (d) None of these |
| Q 6 | The value of $\cos ^{-1}\left(\cos \frac{3 \pi}{2}\right)$ is $\qquad$ <br> (a) $\frac{\pi}{2}$ <br> (b) $\frac{3 \pi}{2}$ <br> (c) $\frac{5 \pi}{2}$ <br> (d) $\frac{7 \pi}{2}$ |


| Q 7 | The value of $2 \sec ^{-1}(2)+\sin ^{-1}\left(\frac{1}{2}\right)$ is $\qquad$ <br> (a) $\frac{\pi}{6}$ <br> (b) $\frac{5 \pi}{6}$ <br> (c) $\frac{7 \pi}{6}$ <br> (d) 1 |
| :---: | :---: |
| Q 8 | If $\cos ^{-1} x>\sin ^{-1} x$ then $\qquad$ <br> (a) $\frac{1}{\sqrt{2}}<x \leq 1$ <br> (b) $0 \leq x<\frac{1}{\sqrt{2}}$ <br> (c) $-1<x \leq \frac{1}{\sqrt{2}}$ <br> (d) $x>0$ |
| Q 9 | $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\ldots \ldots$ <br> (a) $\frac{\pi}{6}$ <br> (b) $\frac{5 \pi}{6}$ <br> (c) $-\frac{\pi}{6}$ <br> (d) $\frac{7 \pi}{6}$ |
| Q10 | The value of $\cos ^{-1}\left[\cos \left(-\frac{\pi}{3}\right)\right]=\ldots .$. <br> (a) $-\frac{\pi}{3}$ <br> (b) $\frac{\pi}{3}$ <br> (c) $\frac{4 \pi}{3}$ <br> (d) $\frac{2 \pi}{3}$ |
| Q11 | The value of $\sin ^{-1}\left[\sin \left(\frac{5 \pi}{3}\right)\right]=\ldots .$. <br> (a) $-\frac{\pi}{3}$ <br> (b) $\frac{5 \pi}{3}$ <br> (c) $\frac{\pi}{3}$ <br> (d) $\frac{2 \pi}{3}$ |
| Q 12 | $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)+2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is <br> (a) $\frac{5 \pi}{6}$ <br> (b) $\frac{\pi}{4}$ <br> (c) $\frac{4 \pi}{3}$ <br> (d) $\frac{4 \pi}{6}$ |


| Q13 | The value of $\sin ^{-1}\left[\sin \left(\frac{7 \pi}{6}\right)\right]=\ldots .$. <br> (a) $\frac{\pi}{6}$ <br> (b) $\frac{5 \pi}{6}$ <br> (c) $-\frac{\pi}{6}$ <br> (d) $\frac{7 \pi}{6}$ |
| :---: | :---: |
| Q14 | $\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\left(-\frac{1}{2}\right)\right)\right\}$ <br> (a) 0 <br> (b) $\frac{1}{2}$ <br> (c) $\frac{\sqrt{3}}{2}$ <br> (d) 1 |
| Q15 | Value of $\sin \left(\cos ^{-1} \frac{4}{5}\right)$ is <br> (a) $1 / 2$ <br> (b) $3 / 5$ <br> (c) $2 / 3$ <br> (d) $3 / 4$ |
| Q16 | Value of $\cos \left(\tan ^{-1} \frac{4}{3}\right)$ is <br> (a) $2 / 3$ <br> (b) $1 / 2$ <br> (c) $3 / 4$ <br> (d) $3 / 5$ |
| Q 17 | $\cos ^{2}\left(\sin ^{-1}\left(\frac{1}{2}\right)\right)+\sin ^{2}\left(\cos ^{-1}\left(\frac{1}{2}\right)\right)$ <br> (a) $1 / 2$ <br> (b) 1 <br> (c) $3 / 2$ <br> (d)2 |
| Q 18 | $\sin ^{-1}\left(\frac{1}{2}\right)+2 \cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\cdots$ <br> (a) $\frac{\pi}{2}$ <br> (b) $\pi$ <br> (c) $\frac{3 \pi}{4}$ <br> (d) $\frac{3 \pi}{2}$ |
| Q 19 | The value of $\cos ^{-1}\left[\cos \left(\frac{4 \pi}{3}\right)\right]=\ldots .$. |


|  | (a) $\frac{\pi}{3}$ <br> (b) $\frac{2 \pi}{3}$ <br> (c) $\frac{4 \pi}{3}$ <br> (d) $-\frac{\pi}{3}$ |
| :---: | :---: |
| Q 20 | The value of $\tan ^{-1}\left[\tan \left(\frac{7 \pi}{4}\right)\right]=\ldots .$. <br> (a) $-\frac{\pi}{4}$ <br> (b) $\frac{\pi}{4}$ <br> (c) $\frac{3 \pi}{4}$ <br> (d) $-\frac{3 \pi}{4}$ |
| Q 21 | $\cos \left(\frac{\pi}{3}+\cos ^{-1}(-1)\right)=\cdots$ <br> (a) $1 / 2$ <br> (b) $-1 / 2$ <br> (c) 1 <br> (d) -1 |
| Q 22 | Domain of $\sin ^{-1} x$ is <br> (a) $[0,1]$ <br> (b) $(-\infty, \infty)$ <br> (c) $[0, \pi]$ <br> (d) $[-1,1]$ |
| Q 23 | $\sin \left[\tan ^{-1}(-\sqrt{3})+\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]=\cdots$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d)2 |
| Q 24 | The solution set of $\sin ^{-1} x \leq \cos ^{-1} x$ is <br> (a) $\frac{1}{\sqrt{2}} \leq x \leq 1$ <br> (b) $-\frac{1}{\sqrt{2}} \leq x \leq 1$ <br> (c) $-1 \leq x \leq \frac{1}{\sqrt{2}}$ <br> (d) $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$ |
| Q 25 | If $\tan ^{-1} x>\cot ^{-1} x$ then ... <br> (a) $x>1$ <br> (b) $x<1$ |


|  | (c) $x=1$ <br> (d) $x \in R$ |
| :---: | :---: |
| Q 26 | Value of $\cos \left[\frac{\pi}{6}+\cos ^{-1}\left(-\frac{1}{2}\right)\right]=\cdots$ <br> (a) $-\frac{\sqrt{3}}{2}$ <br> (b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$ <br> (c) $\frac{\sqrt{5}-1}{4}$ <br> (d) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$ |
| Q 27 | If $\sin ^{-1} x=y$, then <br> (a) $-\frac{\pi}{2}<y<\frac{\pi}{2}$ <br> (b) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ <br> (c) $0<y<\pi$ <br> (d) $0 \leq y \leq \pi$ |
| Q 28 | $\cot ^{-1}\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1-\sin x}}\right)=\cdots \quad\left(0<x<\frac{\pi}{2}\right)$ <br> (a) $\frac{x}{2}$ <br> (b) $\frac{\pi}{2}-2 x$ <br> (c) $2 \pi-x$ <br> (d) $\pi-\frac{x}{2}$ |
| Q 29 | $\cos \left[\tan ^{-1}\left\{\cot \left(\sin ^{-1} \frac{1}{2}\right)\right\}\right]=\cdots$ <br> (a) 1 <br> (b) $1 / 4$ <br> (c) $1 / 8$ <br> (d) $1 / 2$ |
| Q 30 | $\cot ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)=\cdots$ <br> (a) $-\frac{1}{2} \tan ^{-1} x$ <br> (b) $\cot ^{-1} x$ <br> (c) $\frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x$ <br> (d) $\frac{\pi}{2}-\frac{1}{2} \cot ^{-1} x$ |
|  | CASE STUDY: 1 <br> Read the following text and answer on the basis of the same: The value of an inverse trigonometric function which lies in the |


|  | range of principal branch is called the principal value of that inverse trigonometric function. |
| :---: | :---: |
| Q 1 | Principal value of $\sin ^{-1}\left(\frac{1}{2}\right)$ is <br> (a) $\frac{\pi}{6}$ <br> (b) $\frac{\pi}{3}$ <br> (c) $\frac{\pi}{4}$ <br> (d) $\frac{\pi}{2}$ |
| Q 2 | Principal value of $\tan ^{-1}(1)$ is <br> (a) $\frac{\pi}{3}$ <br> (b) $\pi$ <br> (c) $\frac{\pi}{4}$ <br> (d) $\frac{\pi}{6}$ |
| Q 3 | Principal value of $\cot ^{-1}(\sqrt{3})$ is <br> (a) $\frac{\pi}{4}$ <br> (b) $\frac{\pi}{2}$ <br> (c) $\frac{\pi}{6}$ <br> (d) $\frac{\pi}{2}$ |
| Q 4 | Principal value of $\sin ^{-1}(1)+\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is <br> (a) $2 \pi$ <br> (b) $\pi$ <br> (c) $\frac{3 \pi}{4}$ <br> (d) $\frac{\pi}{3}$ |
| Q 5 | Principal value of $2 \cos ^{-1}(1)+5 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is <br> (a) $\frac{3 \pi}{4}$ <br> (b) $\frac{\pi}{4}$ <br> (c) $\frac{\pi}{2}$ <br> (d) $\frac{5 \pi}{4}$ |
|  | CASE STUDY: 2 <br> The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. " $A$ " is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and $E$. "C" is at the height of |


|  | 10 metres from the ground level. For the viewer $A$, the angle of elevation of " $D$ " is double the angle of elevation of " $C$ " The angle of elevation of " $E$ " is triple the angle of elevation of "C" for the same viewer. <br> Look at the figure given and based on the above information answer the following: |
| :---: | :---: |
| Q 1 | Measure of $\angle C A B=$ <br> (a) $\tan ^{-1} 2$ <br> (b) $\tan ^{-1}\left(\frac{1}{2}\right)$ <br> (c) $\tan ^{-1} 1$ <br> (d) $\tan ^{-1} 3$ |
| Q 2 | Measure of $\angle \mathrm{D} A B=$ <br> (a) $\tan ^{-1} \frac{3}{4}$ <br> (b) $\tan ^{-1}(3)$ <br> (c) $\tan ^{-1} \frac{4}{3}$ <br> (d) $\tan ^{-1} 4$ |
| Q 3 | Measure of $\angle \mathrm{EAB}=$ <br> (a) $\tan ^{-1} 11$ <br> (b) $\tan ^{-1}(3)$ <br> (c) $\tan ^{-1} \frac{2}{11}$ <br> (d) $\tan ^{-1} \frac{11}{2}$ |
| Q 4 | $A^{\prime}$ is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between $\angle C A B$ and $\angle C A^{\prime} B$ is |


|  | (a) $\tan ^{-1}\left(\frac{1}{2}\right)$ <br> (b) $\tan ^{-1}\left(\frac{1}{8}\right)$ <br> (c) $\tan ^{-1} \frac{2}{5}$ <br> (d) $\tan ^{-1} \frac{11}{21}$ |
| :---: | :---: |
| Q 5 | Domain and range of $\tan ^{-1} x=$ <br> (a) $R^{+},\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ <br> (b) $R^{-},\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ <br> (c) $R,\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ <br> (d) $R,\left(0, \frac{\pi}{2}\right)$ |
|  | CASE STUDY: 3 <br> Two men on either side of a temple of $\mathbf{3 0}$ meters high observe its top at the angles of elevation $\alpha$ and $\beta$ respectively. (As shown in the figure above). The distance between the two men is $40 \sqrt{ } 3$ meters and the distance between the first person $A$ and the temple is $30 \sqrt{ } 3$ meters. <br> Based on the above information answer the following: |
| Q 1 | $\angle C A B=\alpha=\ldots$ <br> (a) $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ <br> (b) $\sin ^{-1}\left(\frac{1}{2}\right)$ <br> (c) $\sin ^{-1}(2)$ <br> (d) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ |
| Q 2 | $\angle C A B=\alpha=\ldots$ <br> (a) $\cos ^{-1}\left(\frac{1}{5}\right)$ <br> (b) $\cos ^{-1}\left(\frac{2}{5}\right)$ <br> (c) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ <br> (d) $\cos ^{-1}\left(\frac{4}{5}\right)$ |
| Q 3 | $\angle B \mathrm{CA}=\beta=\ldots$ |


|  | (a) $\tan ^{-1}\left(\frac{1}{2}\right)$ |
| :--- | :--- |
|  | (b) $\tan ^{-1}(2)$ |
|  | (c) $\tan ^{-1} \frac{1}{\sqrt{3}}$ |
|  | (d) $\tan ^{-1} \sqrt{3}$ |
| Q 4 | $\angle \mathrm{ABC}=$ |
|  | (a) $\frac{\pi}{4}$ |
|  | (b) $\frac{\pi}{6}$ <br>  <br>  <br>  <br> (c) $\frac{\pi}{2}$ <br> (d) $\frac{\pi}{3}$ |
| Q 5 | Domain and range of $\operatorname{COS}^{-1} x=$ <br>  <br>  <br>  <br> (a) $(-1,1),(0, \pi)$ <br> (b) $[-1,1],(0, \pi)$ <br> (c) $[-1,1],[0, \pi]$ <br> (d) $(-1,1),\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ |

## ANSWERS

TERM - 1 MATHS CONTENT

## CLASS: XII MATHEMATICS (041)

CHAPTER:2 INVERSE TRIGONOMETRIC FUNCTIONS

| Q1 | (c) $[0, \pi]$ |
| :--- | :--- |
| Q2 | (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ |
| Q3 | (d) $\frac{-\pi}{10}$ |
| Q4 | (a) $[0,1]$ |
| Q 5 | (a) $[1,2]$ |
| Q 6 | (a) $\frac{\pi}{2}$ |
| Q 7 | (b) $\frac{5 \pi}{6}$ |
| Q 8 | (c) $-1<x \leq \frac{1}{\sqrt{2}}$ |
| Q 9 | (b) $\frac{5 \pi}{6}$ |
| Q10 | (b) $\frac{\pi}{3}$ |
| Q11 | (a) $-\frac{\pi}{3}$ |
| Q 12 | (a) $\frac{5 \pi}{6}$ |
| Q13 | (c) $-\frac{\pi}{6}$ |
| Q14 | (d) 1 |
| Q15 | (b) $3 / 5$ |
| Q16 | (d) $3 / 5$ |
| Q 17 | (c) $3 / 2$ |
| Q 18 | (d) $\frac{3 \pi}{2}$ |
| Q 19 | (b) $\frac{\pi \pi}{3}$ |
| Q 20 | (a) $-\frac{\pi}{4}$ |
| Q 21 | (b) $-1 / 2$ |
| Q 22 | (d) $[-1,1]$ |
| Q 23 | (a) 1 |
| Q 24 | (c) $-1 \leq x \leq \frac{1}{\sqrt{2}}$ |
| Q 25 | (a) $x>1$ |
| Q 26 | (a) $-\frac{\sqrt{3}}{2}$ |
| Q 27 | (b) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ |
| Q 28 | (d) $\pi-\frac{x}{2}$ |


| Q 29 | (d) $1 / 2$ |
| :---: | :---: |
| Q 30 | (c) $\frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x$ |
|  | ANSWER TO CASE STUDY: 1 |
| Q 1 | (a) $\frac{\pi}{6}$ |
| Q 2 | (c) $\frac{\pi}{4}$ |
| Q 3 | (c) $\frac{\pi}{6}$ |
| Q 4 | (c) $\frac{3 \pi}{4}$ |
| Q 5 | (d) $\frac{5 \pi}{4}$ |
|  | ANSWER TO CASE STUDY: 2 |
| Q 1 | (b) $\tan ^{-1}\left(\frac{1}{2}\right)$ |
| Q 2 | (c) $\tan ^{-1} \frac{4}{3}$ |
| Q 3 | (d) $\tan ^{-1} \frac{11}{2}$ |
| Q 4 | (b) $\tan ^{-1}\left(\frac{1}{8}\right)$ |
| Q 5 | (c) $R,\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ |
|  | ANSWER TO CASE STUDY: 3 |
| Q 1 | (b) $\sin ^{-1}\left(\frac{1}{2}\right)$ |
| Q 2 | (c) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ |
| Q 3 | (d) $\tan ^{-1} \sqrt{3}$ |
| Q 4 | (c) $\frac{\pi}{2}$ |
| Q 5 | (c) $[-1,1],[0, \pi]$ |

NAME OF TEACHER: RAJENDER PARMAR
NAME OF KV : K V INS VALSURA

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION TERM - 1 MATHS CONTENT CLASS: XII <br> CHAPTER: MATRICES

1. A matrix is an ordered rectangular array of numbers or functions.
2. A matrix having $m$ rows and $n$ columns is called a matrix of order $m \times n$
3. [ $\mathrm{a}_{\mathrm{ij}}$ ] $\mathrm{m} \times 1$ is a column matrix.
4. [ $\left.\mathrm{a}_{\mathrm{ij}}\right]_{1 \times n}$ is a row matrix.
5. An $m \times n$ matrix is a square matrix if $m=n$
6. $A=\left[a_{i j}\right] m \times m$ is a diagonal matrix if $a_{i j}=0$ when $i \neq j$
7. $A=\left[a_{i j}\right] m \times m$ is a scalar matrix if $\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i} \neq \mathrm{j}, \mathrm{a}_{\mathrm{ij}}=\mathrm{k}(\mathrm{k}$ is some constant),When $\mathrm{i}=\mathrm{j}$
8. $A=\left[a_{i j}\right] m \times m$ is an identity matrix if $a_{i j}=1$ when $\mathrm{i}=\mathrm{j}, \mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i} \neq \mathrm{j}$
9. $A=\left[a_{i j}\right]=\left[b_{i j}\right]=B$ if (i) $A$ and $B$ are of same order, (ii) $a_{i j}=b_{i j}$ For all possible values of $i$ and $j$
10. 
```
\(K A=k\left[a_{i j}\right] m \times n=\left[k a_{i j}\right] m \times n\)
```

11. $-\mathrm{A}=(-1) \mathrm{A}$
12. $A-B=A+(-B)$
13. $A+B=B+A$ where $A$ and $B$ are of same order
14. $(A+B)+C=A+(B+C)$ where $A, B$ and $C$ are of same order.
15. $K(A+B)=k A+k B$ where $A$ and $B$ are of same order , $k$ is constant.
16. $(k+m) A=k A+m A$ where $k a d n m$ are constant.

17
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$ (iii) $(A+B) C=A C+B C$
18. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{mxn}$ then $A^{\prime}=\left[\mathrm{a}_{\mathrm{ji}}\right] \mathrm{nxm}$
19.
(i) $\left(A^{\prime}\right)^{\prime}=\mathrm{A}$
(ii) $(k A)^{\prime}=\mathrm{k} A^{\prime}$
(iii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(iv) $(A B)^{\prime}=B^{\prime} A^{\prime}$
20. A is symmetric matrix if $A^{\prime}=\mathrm{A}$
21. $\quad \mathrm{A}$ is skew symmetric matrix if $A^{\prime}=-\mathrm{A}$
22. Any square matrix $A$ can be represented as the sum of a symmetric $\frac{1}{2}(A+A)^{\prime}$ and a skew symmetric matrix $\frac{1}{2}(A-A)^{\prime}$.
23. If $A$ and $B$ are two square matrix such that $A B=B A=I$, then $B$ is the inverse of $A$ and is denoted by $A^{-1}$ and $A$ is inverse of $B$.
24. If $A$ and $B$ are invertible matrices of same order , $(A B)^{-1}=B \quad A^{-1}$
25. Inverse of a square matrix, if it exists, is unique.

## MCQ

| Q1 | If $\left.A=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], B=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right] X=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], Y=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], ~\right], ~$ |
| :--- | :--- |

$A B+X Y$ equals to
(a) [28]
(b) $[24]$
(c) $[12]$
(d) $[-28]$

Q2 The number of all possible matrices of order $3 \times 3$ will each entry 0 or 1 is
(a) 27
(b) 18
(c) 81
(d) 512 .

Q3 If matrix $A$ is both symmetric and skew symmetric, then
(a) $A$ is diagonal matrix
(b) $A$ is square and zero matrix
(c) $A$ is square matrix
(d) None of these

Q 4 If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then the value of $a$ for which $A^{2}=\mathrm{B}$ is
(a) 1
(b) -1
(c) 4
(d) Not possible to find

Q 5 C is a skew symmetric matrix of order $\mathrm{n}, \mathrm{X}$ is a column matrix of order $n X 1$ then $X^{\prime} C X$ is a
(a) square matrix
(b) identity matrix
(c) zero marix
(d) None of these

Q $6 A$ is a $3 \times 4$ matrix. A matrix $B$ is such that $A^{\prime} B$ and $B A^{\prime}$ are defined .Then the order of $B$ is
(a) $3 \times 4$
(b) $3 \times 3$
(c) $4 \times 4$
(d) $4 \times 3$

Q 7 . If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] \quad A^{2}=\left[\begin{array}{ll}x & y \\ y & x\end{array}\right]$ then value of x and y are
(a) $x=a^{2}+b^{2} y=a^{2}-b^{2}$
(b) $x=2 a b y=a^{2}+b^{2}$

|  | (c) $x=a^{2}+b^{2} y=a b$ <br> (d) $x=a^{2}+b^{2} y=2 a b$ |
| :---: | :---: |
| Q 8 | If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-k A-5 I=0$ then the value of $k$ is <br> (a) 3 <br> (b) 7 <br> (c) 5 <br> (d) 9 |
| Q 9 | If $A\left[\begin{array}{ccc}1 & -2 & -5 \\ 3 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$ then $A$ is <br> (a) $\left[\begin{array}{lll}2 & -1 & 1 \\ 0 & -3 & 4\end{array}\right]$ <br> (b) $\left[\begin{array}{cc}5 & -2 \\ 1 & 0 \\ -3 & 4\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]$ <br> (d) $\left[\begin{array}{ccc}-1 & 1 & 0 \\ 2 & -3 & 4\end{array}\right]$ |
| Q10 | If $A=\left[\begin{array}{lll}1 & -2 & 2 \\ 4 & -3 & 0 \\ 5 & -1 & 6\end{array}\right] \quad B=\left[\begin{array}{ccc}1 & 2 & 3 \\ -4 & -5 & -6 \\ 7 & -8 & 9\end{array}\right]$ then the element of second column and third row of $A B$ is <br> (a) 1 <br> (b) -44 <br> (c) 30 <br> (d) -33 |
| Q11 | The diagonal elements of a skew symmetric matrix are all zeros (b) are all equal to some scalar k not equal to zero (c) can be any number <br> ( d ) None of these |
| $\begin{aligned} & \mathrm{Q} \\ & 12 \end{aligned}$ | If $\mathrm{A}=\left[\begin{array}{cc}3 & x+1 \\ 2 x+3 & x+2\end{array}\right]$ is a symmetric matrix, then x is <br> (a) 4 <br> (b) 2 <br> (c) -4 <br> (d) -2 |
| $\begin{aligned} & \mathrm{Q} \\ & 13 \end{aligned}$ | Choose the correct statement: <br> (a) Every identity matrix is a scalar matrix. <br> (b) Every scalar matrix is a identity matrix. <br> (c) Each diagonal matrix is a identity matrix. <br> (d) A square matrix with all the elements 1 is an identity matrix. |
| Q14 | If A is square matrix such that $A^{2}=\mathrm{A}$, then $(I+A)^{2}-3 \mathrm{~A}$ is <br> (a) I <br> (b) 2 A <br> (c) 3 I <br> (d) A |


| Q15 | The values of $x, y$ and $z$, if $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$ are <br> (a) $x=2 y=3 z=4$ <br> (b) $x=2 y=4 z=3$ <br> (c) $x=3 y=4 z=2$ <br> (d) $x=3 y=2 z=4$ |
| :---: | :---: |
| Q16 | If matrix $A=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ is the square root of the $2 \times 2$ identity matrix, then the relation a between $\mathrm{a}, \mathrm{b}$ and c is <br> ( a ) $a^{2}+\mathrm{bc}-1=0$ <br> (b) $a^{2}-\mathrm{bc}-1=0$ <br> (c) $a^{2}+\mathrm{bc}+1=0$ <br> (d) $-a^{2}+b c-1=0$ |
| $\begin{aligned} & \mathrm{Q} \\ & 17 \end{aligned}$ | Suppose $3 \times 3$ matrix $A=[a i j]$, whose elements are given by $\mathrm{a}_{\mathrm{ij}}=i^{2}-j^{2}$ Then a 32 is equal to <br> (a) 5 <br> (b) 1 <br> (c) 2 <br> (d) 3 |
| $\begin{aligned} & \mathrm{Q} \\ & 18 \end{aligned}$ | If $\left[\begin{array}{cc}1 & 2 \\ -2 & -b\end{array}\right]+\left[\begin{array}{ll}a & 4 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 0\end{array}\right]$, then $a^{2}+b^{2}$ is equal to <br> ( a ) 20 <br> (b) 22 <br> (c) 12 <br> (d) 10 |
| $\begin{aligned} & \mathrm{Q} \\ & 19 \end{aligned}$ | $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$ then the value of $x$ is <br> (a) 0 <br> (b) 3 <br> (c) 7 <br> (d) 10 |
| $\begin{aligned} & \mathrm{Q} \\ & 20 \end{aligned}$ | If $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$ then $A^{2} \quad$ is equal to <br> (a) 0 <br> (b) - A <br> (c) I <br> (d) 2 A |
| $\begin{aligned} & \mathrm{Q} \\ & 21 \end{aligned}$ | If $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=O$ then the value of x is <br> ( a ) $5 \sqrt{5}$ <br> (b) $\pm 4 \sqrt{3}$ <br> (c) $\pm 3 \sqrt{5}$ <br> (d) $\pm 6 \sqrt{5}$ |
| $\begin{aligned} & \mathrm{Q} \\ & 22 \end{aligned}$ | If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the value of $k$ so that $A^{2}=8 \mathrm{~A}+\mathrm{kI} \quad$ is <br> (a) 4 <br> (b) 5 <br> (c) 6 <br> (d) - 7 |


| Q 23 | If $\mathrm{X}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right] \quad$ and $\mathrm{A}=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ satisfy the equation AX = B <br> Then the matrix $A$ is equal to <br> (a) $\left[\begin{array}{cc}-7 & 26 \\ 1 & -5\end{array}\right]$ <br> (b) $\left[\begin{array}{ll}7 & 26 \\ 4 & 17\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}-7 & -4 \\ 26 & 13\end{array}\right]$ <br> (d) $\left[\begin{array}{ll}-7 & 26 \\ -6 & 23\end{array}\right]$ |
| :---: | :---: |
| $\begin{aligned} & \mathrm{Q} \\ & 24 \end{aligned}$ | If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n}$, then $A^{\prime}$ is equal to <br> (a) $[\mathrm{a} \mathrm{ji}] n \times m$ <br> (b) $\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n}$ <br> (c) $\left[\mathrm{a}_{\mathrm{ji}}\right] \mathrm{m} \times \mathrm{n}$ <br> (d) $\left[\mathrm{a}_{\mathrm{ij}}\right] n \times \mathrm{m}$ |
| $\begin{aligned} & \mathrm{Q} \\ & 25 \end{aligned}$ | If $A$ and $B$ are symmetric matrices of same order, then $A B-B A$ is a <br> (a) Skew symmetric matrix <br> (b) Symmetric matrix <br> (c) Zero matrix <br> (d) Identity matrix |
| Q 26 | If $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$, then $A B$ is <br> (a) $B$ <br> (b) A <br> (c) O <br> (d) I |
| $\begin{aligned} & \mathrm{Q} \\ & 27 \end{aligned}$ | A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called a diagonal matrix if $a_{i j}=0$ for <br> (a) $i=j$ <br> (b) $i<j$ <br> (c) $i>j$ <br> (d) $i \neq j$ |
| Q 28 | If $A=\left[\begin{array}{ccc}4 & 1 & 0 \\ 1 & -2 & 2\end{array}\right], B=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & x\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $D=\left[\begin{array}{c}15+x \\ 1\end{array}\right]$ such that $(2 A-3 B) C=D$, then $x=$ <br> (a) 3 <br> (b) -4 <br> (c) -6 <br> (d) 6 |
| Q 29 | If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying $A A^{T}=9 I_{3}$, then the values of $a$ and $b$ respectively are <br> (a) 1, 2 <br> (b) $-2,-1$ <br> (c) $-1,2$ <br> (d) $-2,1$ |


| $\begin{aligned} & \mathrm{Q} \\ & 30 \end{aligned}$ | If $\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ is sum of a symmetric matrix $B$ and a skew symmetric matrix $C$, then $C$ is <br> (a) $\left[\begin{array}{cc}1 & -5 / 2 \\ 5 / 2 & 0\end{array}\right]$ <br> (b) $\left[\begin{array}{cc}1 & -5 / 2 \\ 5 / 2 & 1\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}0 & -5 / 2 \\ 5 / 2 & 0\end{array}\right]$ <br> (d) $\left[\begin{array}{cc}1 & -3 / 2 \\ 5 / 2 & 1\end{array}\right]$ |
| :---: | :---: |
| $\begin{aligned} & \mathrm{Q} \\ & 31 \end{aligned}$ | If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then $A^{16}$ is equal to : <br> (a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ <br> (b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ <br> (d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ |
| $\begin{aligned} & \mathrm{Q} \\ & 32 \end{aligned}$ | If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$, then the values of $k$, $a$ and $b$ are respectively <br> (a) $-6,-12,-18$ <br> (b) $-6,4,9$ <br> (c) $-6,-4,-9$ <br> (d) $-6,12,18$ |
|  | CASE STUDY : 1 <br> Two farmers Ram Kishan and Gurcharan Singh cultivate only three varities of rice namely $X, Y$ and $Z$. The sale (in ₹ ) of these varities of rice by both the farmers in the month of September and October are given by the following matrices $A$ and $B$ <br> September sales (in ₹) $\mathrm{A}=\left[\begin{array}{ccc} \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\ 10,000 & 20,000 & 30,000 \\ 50,000 & 30,000 & 10,000 \end{array}\right] \begin{gathered} \text { GURCHARAN SISHAN } \\ \text { GUR } \end{gathered}$ |


|  | October sales (in ₹) $\mathrm{B}=\left[\begin{array}{ccc} \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\ 5,000 & 10,000 & 6,000 \\ 20,000 & 10,000 & 10,000 \end{array}\right] \begin{gathered} \text { RAMKISHAN } \\ \text { GURCHARAN SINGH } \end{gathered}$ <br> Based on the above information answer the following question: |
| :---: | :---: |
| Q 1 | The combined sales in September and October for each farmer in each variety is <br> ( a ) $\left[\begin{array}{ccc}5,000 & 10,000 & 24,000 \\ 30,000 & 20,000 & 0\end{array}\right]$ <br> ( b ) $\left[\begin{array}{lll}15,000 & 30,000 & 36,000 \\ 70,000 & 40,000 & 20,000\end{array}\right]$ <br> ( c ) $\left[\begin{array}{ccc}15,000 & 30,000 & 36,000 \\ 30,000 & 20,000 & 0\end{array}\right]$ <br> ( d ) $\left[\begin{array}{ccc}5,000 & 10,000 & 24,000 \\ 70,000 & 40,000 & 20,000\end{array}\right]$ |
| Q 2 | The change in sales from September to October is |
| Q 3 | If Ram Kishan receive 2 percent profit on gross rupees sales, the profit of Ram Kishan for each variety sold in October is <br> (a) [ $\left.\begin{array}{lll}200 & 200 & 120\end{array}\right]$ <br> (b) [ $\left.\begin{array}{lll}100 & 100 & 120\end{array}\right]$ <br> (c) [ $\left.\begin{array}{llll}100 & 200 & 220\end{array}\right]$ <br> (d) [ $\left.\begin{array}{lll}100 & 200 & 120\end{array}\right]$ |
| Q 4 | If Gurcharan receive 3 percent profit on gross rupees sales, the profit of Gurcharan Singh for each variety sold in October is <br> (a) $\left[\begin{array}{lll}600 & 600 & 300\end{array}\right]$ <br> (b) $\left[\begin{array}{lll}600 & 600 & 600\end{array}\right]$ <br> (c) $\left[\begin{array}{lll}600 & 300 & 300\end{array}\right]$ <br> (d) $\left[\begin{array}{lll}300 & 300 & 300\end{array}\right]$ |
|  | CASE STUDY: 2 <br> Three schools DPS, CVC and KVS decided to organize a fair for collecting money for helping the food victims <br> They sold handmade fans, mats and plates from recycled material at a cost of ₹ 25 , ₹ 100 and ₹ 50 each respectively. The numbers of articles sold are given as |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | School / Article |
| Handmade fans | 40 | DPS | 25 | 35 |
| Mats | 50 | 40 | 50 |  |
| Plates | 20 | 30 | 40 |  |

Based on the information given above, answer the following questions.

Q 1 What is the total money (in ₹) collected by the school DPS?
(a) 700
(b) 7000
(c) 6125
(d) 7875

Q 2 What is the total amount of money (in ₹) collected by schools CVC and KVS?
(a) 14000
(b) 15725
(c) 21000
(d) 13125

Q 3 What is the total amount of money (in ₹) collected by all three schools DPS , CVC and KVS ?
(a) 15775
(b) 14000
(c) 21000
(d) 17125

Q 4 If the number of handmade fans and plates are interchanged for all the schools, then what is the total money (in ₹) collected by all the schools?
(a) 18000
(b) 6750
(c) 5000
(d) 21250

Q 5 How many articles (in total) are sold by three schools ?
(a) 230
(b) 130
(c) 430
(d) 330

CASE STUDY : 3
On her birthday, Seema decided to donate some money to children of an orphanage home.

|  | If there were 8 children less, everyone would have got Rs 10 more.However, if there were 16 children more,everyone would have got Rs 10 less.Let the number of children be $x$ and the amount distributed by Seema for one child be y (in ₹) <br> Based on the information given above, answer the following questions. |
| :---: | :---: |
| Q 1 | The equations in terms are <br> (a) $5 x-4 y=40,5 x-8 y=-80$ <br> (b) $5 x-4 y=40,5 x+8 y=80$ <br> (c) $5 x-4 y=40,5 x+8 y=-80$ <br> (d) $5 x+4 y=40,5 x-8 y=-80$ |
| Q 2 | Which of following matrix equations represent the information given above? <br> (a) $\left[\begin{array}{ll}5 & 4 \\ 5 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$ <br> (b) $\left[\begin{array}{ll}5 & -4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}40 \\ 80\end{array}\right]$ <br> (c) $\left[\begin{array}{ll}5 & -4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$ <br> (d) $\left[\begin{array}{cc}5 & 4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$ |
| Q 3 | The number of children who were given some money by Seema, is <br> (a) 30 <br> (b) 40 <br> (c) 23 <br> (d) 32 |
| Q 4 | How much amount (in ₹) is given to each child by Seema ? <br> (a) 32 <br> (b) 30 <br> (c) 62 <br> (d) 26 |
| Q 5 | How much amount Seema spends in distributing the money to all the students of the Orphanage? |

(a) ₹609
(b) ₹ 960
(c) ₹906
(d) ₹ 690

ANSWERS

| Q 1 | A | Q 2 | D | Q 3 | B | Q 4 | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q 5 | C | Q 6 | A | Q 7 | D | Q 8 | c |
| Q 9 | C | Q 10 | D | Q 11 | A | Q 12 | d |
| Q 13 | a | Q 14 | A | Q 15 | b | Q 16 | a |
| Q 17 | a | Q 18 | A | Q 19 | b | Q 20 | c |
| Q 21 | b | Q 22 | D | Q 23 | a | Q 24 | a |
| Q 25 | a | Q 26 | C | Q 27 | d | Q 28 | c |
| Q 29 | b | Q 30 | C | Q 31 | d | Q 32 | c |

Case study 1 :
1 -b 2 -a 3 -d 4 - c
Case study 2 :
$1-\mathrm{b} \quad 2-\mathrm{a} \quad 3-\mathrm{c} \quad 4-\mathrm{d} \quad 5-\mathrm{d}$
Case study 3 :
$1-\mathrm{a} \quad 2-\mathrm{c} \quad 3-\mathrm{d} \quad 4-\mathrm{b} \quad 5-\mathrm{b}$

NAME OF TEACHER : SHILPA TANEJA
NAME OF KV : K V NO 1 SEC 30 GANDHINAGAR

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

TERM - 1 MATHS CONTENT
CLASS: XII
CHAPTER: DETERMINANTS

| Q1 | If the area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq units. Then the value of $k$ will be <br> (a) 9 <br> (b) 3 <br> (c)-9 <br> (d) 6 |
| :---: | :---: |
| Q2 | If $\left\|\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right\|=\left\|\begin{array}{cc}6 & -2 \\ 7 & 3\end{array}\right\|$, then value of x is <br> (a) 3 <br> (b) $\pm 3$ <br> (c) $\pm 6$ <br> (d) 6 |
| Q3 | If $A=\left\|\begin{array}{ccc}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right\|, \quad$ then $A^{-1}$ exists, if <br> (a) $\lambda=2$ <br> (b) $\lambda \neq 2$ <br> (c) $\lambda \neq-2$ <br> (d) None of these |
| Q4 | If $A$ and $B$ are matrices of order 3 and $\|A\|=5$, and $\|B\|=3$, then $\|3 A B\|$ is equal to <br> (a) 45 <br> (b) 405 <br> (c) 135 <br> (d) None of these |


| Q 5 | If there are two values of 'a' which makes determinant, $\left\|\begin{array}{ccc}1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a\end{array}\right\|=86$, then sum of these numbers is <br> (a) 4 <br> (b) -5 <br> (c) -4 <br> (d) 9 |
| :---: | :---: |
| Q 6 | If A is a square matrix of order 3 , with $\|A\|=9$, then the value of $\|2 . \operatorname{adj} A\|$ <br> (a) 648 <br> (b) 54 <br> (c) 72 <br> (d) 108 |
| Q 7 | If A is a square matrix of order 2 and $\|A\|$,then value of $\left\|2 A A^{\prime}\right\|$ is <br> (a)64 <br> (b) 8 <br> (c) 16 <br> (d) 32 |
| Q 8 | If matrix $\left[\begin{array}{ccc}2 & 3 & -1 \\ x+4 & -1 & 2 \\ 3 x+1 & 2 & -1\end{array}\right]$ is a singular matrix, then the value of x is <br> (a) $\frac{-3}{16}$ <br> (b) $\frac{3}{16}$ <br> (c) $\frac{4}{13}$ <br> (d) $\frac{8}{10}$ |


| Q 9 | For matrix $A=\left[\begin{array}{cc}2 & 5 \\ -11 & 7\end{array}\right],(\operatorname{adj} A)^{\prime}$ is equal to: <br> (a) $\left[\begin{array}{cc}-2 & -5 \\ 11 & 7\end{array}\right]$ <br> (b) $\left[\begin{array}{cc}7 & 5 \\ 11 & 2\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}7 & 11 \\ -5 & 2\end{array}\right]$ <br> (d) $\left[\begin{array}{cc}7 & -5 \\ 11 & 2\end{array}\right]$ |
| :---: | :---: |
| Q10 | Given that $\mathrm{A}=\left[a_{i j}\right]$ is a square matrix of order $3 \times 3$ and $\|\mathrm{A}\|=-7$, then the value of $\sum_{i=1}^{3} a_{i 1} A_{\mathrm{i} 1}$, where $A_{i j}$ denotes the cofactor of element $a_{i j}$ is: <br> (a) 7 <br> (b) -7 <br> (c) 0 <br> (d) 49 |
| Q11 | Given that $A$ is a non-singular matrix of order 3 such that $A^{2}=2 A$, then value of $\|2 A\|$ is: <br> (a) 4 <br> (b) 8 <br> (c) 64 <br> (d) 16 |
| Q12 | Let $A=\left\|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right\|$, where $0 \leq \theta \leq 2 \pi$. Then <br> (a) $\operatorname{Det}(A)=0$ <br> (b) $\operatorname{Det}(A) \in(2, \infty)$ |


|  | (c) $\operatorname{Det}(A) \in(2,4)$ <br> (d) $\operatorname{Det}(A) \in[2,4]$ |
| :---: | :---: |
| Q13 | For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right], \mathrm{A}^{2}+\mathrm{aA}+\mathrm{bI}=\mathrm{O}$, then the values of numbers $a$ and $b$ is <br> (a) $a=3, b=2$ <br> (b) $a=4, b=3$ <br> (c) $a=-4, b=1$ <br> (d) $a=-3, b=2$ |
| Q14 | If A is an invertible matrix of order 3 and $\|A\|=5$, then value $\|\operatorname{adj} A\|$ is <br> (a) 15 <br> (b) 45 <br> (c) 35 <br> (d) 25 |
| Q15 | If A is a singular matrix, then $A(\operatorname{adj} A)$ is <br> (a) Null matrix <br> (b) Scalar matrix <br> (c) Identity matrix <br> (d) None of these |
| Q16 | If $A$ is $3 \times 3$ square marix such that $A(\operatorname{adj} A)=2 I$, where $I$ is the identity matrix, The value of $\|\operatorname{adj} A\|$ is <br> (a) 4 <br> (b) -4 <br> (c) 0 <br> (d) none of these |


| Q17 | If the value of a third order determinant is 12 , then the value of the determinant formed by replacing each element by its cofactors will be <br> (a) 12 <br> (b) 144 <br> (c) -12 <br> (d) 13 |
| :---: | :---: |
| Q18 | If A is a square matrix of order $3 \times 3$ such that $\|A\|=2$, then the value of $\|\operatorname{adj}(\operatorname{adj} A)\|$ is <br> (a) -16 <br> (b) 16 <br> (c) 0 <br> (d) 2 |
| Q19 | If A is a square matrix of order $3 \times 3$ such that $\|A\|=4$, then the value of $\|A(\operatorname{adj} A)\|$ is <br> (a) 4 <br> (b) 16 <br> (c) 12 <br> (d) 48 |
| Q20 | If A is a square symmetric matrix of order 3 then the value of $\|A\|$ is <br> (a) 0 <br> (b) 3 <br> (c) 9 <br> (d) 27 |
| Q21 | If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$, then $(\operatorname{adj} A)$ is equal to <br> (a) $a^{27}$ <br> (b) $a^{6}$ <br> (c) $a^{9}$ <br> (d) $a^{3}$ |


| Q22 | Let $A=\left[\begin{array}{cc}200 & 50 \\ 10 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}50 & 40 \\ 2 & 3\end{array}\right]$, then $\|A B\|$ is equal to <br> (a) 460 <br> (b) 2000 <br> (c) 3000 <br> (d)-7000 |
| :---: | :---: |
| Q23 | The value of determinant $\left[\begin{array}{ll}\cos 20^{\circ} & \sin 20^{\circ} \\ \sin 70^{\circ} & \cos 70^{\circ}\end{array}\right]$ is <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) $\frac{1}{2}$ |
| Q24 | If $A$ is a skew symmetric matrix of odd order $n$, then <br> (a) $\|A\|=0$ <br> (b) $\|A\|=1$ <br> (c) $\|A\|=-1$ <br> (d) None of these |
| Q25 | The minors of the diagonal elements of the determinant $\left\|\begin{array}{ccc}3 & -1 & 2 \\ 4 & -1 & 3 \\ 2 & 0 & -1\end{array}\right\|$ are <br> (a) $1,7,1$ <br> (b) $-1,7,1$ <br> (c) $1,-7,1$ <br> (d) None of these |
| Q26 | If $\Delta=\left\|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right\|$, then the cofactor $\mathrm{A}_{21}$ is |


|  | (a) - (hc +fg ) <br> (b) $\mathrm{fg}-\mathrm{hc}$ <br> (c) $\mathrm{fg}+\mathrm{hc}$ <br> (d) $\mathrm{hc}-\mathrm{fg}$ |
| :---: | :---: |
| Q27 | The matrix is $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$ is <br> (a) Singular matrix <br> (b) Non - singular <br> (c) Symmetric matrix <br> (d) Skew symmetric matrix |
| Q28 | The adjoint of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is <br> (a) $\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$ <br> (b) $\left[\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right]$ <br> (c) $\left[\begin{array}{cc}4 & -2 \\ -3 & -1\end{array}\right]$ <br> (d) $\left[\begin{array}{ll}4 & -2 \\ 1 & -3\end{array}\right]$ |
| Q29 | If $A=\left[\begin{array}{cc}1 & 4 \\ 3 & 15\end{array}\right]$, then $\left\|A^{-1}\right\|$ is equal to <br> (a) $\frac{-1}{3}$ <br> (b) $\frac{1}{3}$ <br> (c) $\frac{2}{3}$ <br> (d) $\frac{4}{3}$ |


| 30 | If $A=\left[\begin{array}{ccc}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$, then find $\mid \operatorname{adj}(\operatorname{adj}(A) \mid$ <br> (a) -1 <br> (b) 0 <br> (c) 1 <br> (d)None of these |
| :---: | :---: |
|  | Case Study Based Question <br> Two schools SWAMIVIVEKANANDA and SGRR wants to award their selected students on the basis of values of sincerity, truthfulness and helpfulness. SWAMIVIVEKANANDA wants award ₹x each, ₹y each and ₹z each for three respective values to 3, 2 and 1 students respectively with a total award money of ₹1600. SGRR wants to spend ₹ 2300 to award its $4,1,3$ students on respective values (by giving the same amount to the three values as before). The total amount of the award for one prize on each is ₹ 900. <br> Based on the given information, answer the following questions: |
| Q31 | The value $x+y+z$ is (a 800 <br> (b) 900 <br> (c1000 <br> (d) 12000 |
| Q32 | The value of $4 x+y+z$ is <br> (a) 1600 <br> (b) 1200 <br> (c) 900 <br> (d) 2300 |
| Q33 | The value of $y$ is <br> (a) 200 <br> (b) 250 <br> (c) 300 |


|  | (d) 350 |
| :---: | :---: |
| Q34 | The value of $2 x+3 y$ is <br> (a) 1000 <br> (b) 1100 <br> (c) 1200 <br> (d) 1300 |
| Q35 | $\mathrm{Y}-\mathrm{x}$ is equal to <br> (a) 100 <br> (b) 200 <br> (c) 300 <br> (d) 400 |
|  | Case Study Based question <br> A factory produces three items every day. Their production on certain day is 45 Tons. It is found that the production of third item exceeds the production of first item by 8 tons while the total production of first and third item is twice the production of second item. <br> Based on the given information, answer the following questions: |
| Q36 | If $x, y, z$ respectively denotes the quantity (in tons) of first, second and third item produced, then which of the following is true? <br> (a) $x+y+z=45$ <br> (b) $x+8=z$ <br> (c) $x-2 y+z=0$ <br> (d)All of these |
| Q37 | If $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1\end{array}\right]^{-1}=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & 2 \\ 3 & 0 & -3 \\ 1 & -2 & 1\end{array}\right]$ <br> Then the inverse of $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1\end{array}\right]$ is |


|  | (a). $\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6}\end{array}\right]$ <br> (b) $\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{-1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6}\end{array}\right]$ <br> (c). $\left[\begin{array}{ccc}\frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6}\end{array}\right]$ <br> D .None of these |
| :---: | :---: |
| Q38 | $x: y: z$ is equal to <br> (a)12: 13: 20 <br> (b) $11: 15: 19$ <br> (c)15: 19: 11 <br> (d) 13: 12: 20 |
| Q39 | Which of the following is not true? <br> (a) $\|\operatorname{adj} A\|=\|A\|^{n-1}$, where n is order of the matrix A <br> (b) $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$ <br> (c)A is skew symmetric matrix of odd then $\|A\|=0$ |


|  | (d) All above |
| :---: | :---: |
| Q40 | If a matrix $B$ is both symmetric and skew symmetric, then $\|B\|$ is equal to <br> (a) 1 <br> (b-1 <br> (c) 0 <br> (d)None of these |
|  | Case Study Based question <br> Mahesh wants to donate a rectangular plot of land for a school of her village. When she was asked by construction agency to give dimensions of the plot, she said that if its length $(x)$ is decreased by 50 m and breadth $(y)$ is increased by 50 m , then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m , then its area will be decrease by $5300 \mathrm{~m}^{2}$. <br> Based on above information answer the following questions: |
| Q41 | The equations in terms of $x$ and $y$ are <br> (a) $x-y=50,2 x-y=550$ <br> (b) $x-y=100,2 x+y=550$ <br> (c) $x+y=50,2 x+y=550$ <br> (d) $x+y=50,2 x-y=550$ |
| Q42 | Which of the following matrix equation is represented by the given information? <br> (a) $\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}50 \\ 550\end{array}\right]$ <br> (b) $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}50 \\ 550\end{array}\right]$ <br> (c) $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-50 \\ -550\end{array}\right]$ <br> (d) $\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}50 \\ 550\end{array}\right]$ |


| Q43 | The value of $x$ (length of rectangular plot is <br> (a) 150 m <br> (b) 400 m <br> (c) 200 m <br> (d) 320 m |
| :--- | :--- |
| Q44 | The value of $y$ (breadth of rectangular plot) is <br> (a) 150 m <br> (b) 200 m <br> (c) 430 m <br> (d) 350 m |
| Q45 | How much is the area of rectangular field? <br> (a) $60000 \mathrm{sq} . m$ <br> (b) 30000 sq.m <br> (c) 40000 sq.m <br> (d) 20000 sq.m |

## ANSWERS

| 1.b | 2.c | 3.d | 4.c | 5.c | 6.d | 7.a | 8.a | 9.c | 10.b | 11.b | 12.d | 13.c | 14.d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15.a | 16.a | 17.b | 18.b | 19.a | 20.a | 21.b | 22.d | 23.c | 24.a | 25. |  |  |  |
| 26.b | 27.b | 28.a | 29.b | 30.c | 31.b | 32. $D$ | 33. C | 34.d | 35.a | 36.d |  |  |  |
| 37.c | 38. B | 39.d | 40.c | 41.b | 42.a | 43.c | $44 . a$ | $45 . b$ |  |  |  |  |  |

NAME OF TEACHER: LAXAMN SINGH RAWAT
NAME OF KV :KV NO-3, AFS, MAKARPURA, VADODARA

| SL.NO. | QUESTION |
| :---: | :---: |
| 1. | The function $y=\|x-5\|$ is <br> (a) Continuous at $\mathrm{X}=5$ <br> (b) Differentiable at $x=5$ <br> (c) Both continuous and differentiable at $x=5$ <br> (d) Neither continuous nor differentiable at $x=5$ |
| 2 | At how many points the function $y=\sin x$ is not differentiable? <br> (a) One (b) Two <br> (c) All (d) No |
| 3 | $f(x)$ is a polynomial function with degree 7 . Which order derivative of the function will be zero? <br> (a) 6 <br> (b) 7 <br> (c) 8 (d) 9 |
| 4 | The derivative of the function $f(x)=x^{x}$ w.r.t. ' x ' is <br> (a) $1+\log x$ <br> (b) $x^{x}(1+\log x)$ <br> (c) $1+x^{x}$ <br> (d) None of these |
| 5 | The derivative of $\log _{10} x$ w.r.t. ' $x$ ' is <br> (a) $\frac{1}{x}$ <br> (b) $\frac{x}{10}$ <br> (c) $\frac{10}{x}$ <br> (d) None of these |
| 6 | If $x^{y}=e^{x-y}$ then $\frac{d y}{d x}$ is $\ldots$ <br> (a) $\frac{1+x}{1+\operatorname{lox} x}$ <br> (b) $\frac{1-\log x}{1+\operatorname{lox} x}$ <br> (c) Not defined <br> (d) $\frac{\log x}{(1+\log x)^{2}}$ |
| 7 | If $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, then $\frac{d y}{d x}=\cdots$. <br> (a) $\frac{-2}{1+x^{2}}$ <br> (b) $\frac{2}{1+x^{2}}$ <br> (c) $\frac{1}{2-x^{2}}$ <br> (d) $\frac{2}{2-x^{2}}$ |
| 8 | For the curve $\sqrt{x}+\sqrt{y}=1, \frac{d y}{d x}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is ... <br> (a) $1 / 2$ <br> (b) 1 <br> (c) -1 <br> (d) 2 |
| 9 | Let $f(x)=\|x\|+\|x-1\|$ then <br> (a) $f(x)$ is continuous at $x=0$ as well as at $x=1$ <br> (b) $\quad f(x)$ is continuous at $x=0$ as but not at $x=1$ <br> (c) $f(x)$ is continuous at $x=1$ but not at $x=0$ <br> (d) None of these |
| 10 | The value of b for which the function $f(x)=\left\{\begin{array}{c}5 x-4,0<x \leq 1 \\ 4 x^{2}+3 b x, 1<x<2\end{array}\right.$ is continuous at every point of its domain is... <br> (a)-1 <br> (b) 0 <br> (c) $13 / 3$ <br> (d) 1 |


| 11 | If $y=\sqrt{\sin x+y}$ then $\mathrm{dy} / \mathrm{dx}=\ldots$ <br> (a) $\frac{\cos x}{2 y-1}$ <br> (b) $\frac{\cos x}{1-2 y}$ <br> (c) $\frac{\sin x}{1-2 y}$ <br> (d) $\frac{\sin x}{2 y-1}$ |
| :---: | :---: |
| 12 | If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$ then $\mathrm{dy} / \mathrm{dx}=\ldots$ <br> (a) $\frac{4 x^{3}}{1-x^{4}}$ <br> (b) $\frac{-4 x}{1-x^{4}}$ <br> (c) $\frac{1}{4-x^{4}}$ <br> (d) $\frac{-4 x^{3}}{1-x^{4}}$ |
| 13 | If $y=\sqrt{\tan x}$ then $\mathrm{dy} / \mathrm{dx}$ at $x=\frac{\pi}{4}$ is given by.. <br> (a) $\infty$ <br> (b) 1 <br> (c) 0 <br> (d) $1 / 2$ |
| 14 | Which of the followings is true about the greatest integer function $f(x)=[x]$ ? <br> (a) Everywhere continuous on $R(b)$ Nowhere continuous on $R$ <br> (c) Continious on $\mathrm{R}-\mathrm{Z}$ <br> (d) None of these |
| 15 | If $y=x\|x\|$ then $\mathrm{dy} / \mathrm{dx}$ for $\mathrm{x}<0$ is <br> (a) $2 x$ <br> (b) $-2 x$ <br> (c) 0 <br> (d) None of these |
| 16 | Let $f(x)=\left\{\begin{array}{c}x+a \text { if } x \geq 1 \\ a x^{2}+1 \text { if } x<1\end{array}\right.$ then f is differentiable at $\mathrm{x}=1$ if <br> (a) $a=1$ <br> (b) $a=0$ <br> (c) $a=2$ <br> (d) $a=1 / 2$ |
| 17 | The function $f(x)=\sin ^{-1}(\cos x)$ is.. <br> (a) discontinuous at $\mathrm{x}=0$ (b) continuous at $\mathrm{x}=0$ (c) Differentiable at $\mathrm{x}=0$ (d) None of these |
| 18 | If $x=2$ at and $y=a t^{2}$, where $a$ is a constant then $\frac{d^{2} y}{d x^{2}}$ at $x=\frac{1}{2}$ is <br> (a) $\frac{1}{2 a}$ <br> (b) 1 <br> (c) $2 a$ <br> (d) None of these |
| 19 | If $x=t^{2}$ and $y=t^{3}$ then $\frac{d^{2} y}{d x^{2}}=$ <br> (a) $3 / 2$ <br> (b) $3 / 4 t$ <br> (c) $3 / 2 \mathrm{t}$ <br> (d) $3 t / 2$ |
| 20 | If $y=e^{\tan x}$ then $\left(\cos ^{2} x\right) y_{2}=\cdots$ <br> (a) (1-sin $2 x) y_{1}$ (b) $-(1+\sin 2 x) y_{1}$ (c) $(1+\sin 2 x) y_{1}$ (d) None of these |
| 21 | The derivative of $\sin x$ w.r.t. $\cos x$ is <br> $\begin{array}{llll}\text { (a) } 1 & \text { (b) }-1 & \text { (c) } 0 & \text { (d) None of these }\end{array}$ |
| 22 | $\operatorname{Sin}(x+y)=\log (x+y) \text { then } \frac{d^{2} y}{d x^{2}}=\cdots$ |


|  | (a)2 (b) -2 (c) 1 (d) -1 |
| :---: | :---: |
| 23 | $\begin{aligned} & Y=a \sin m x+b \cos m x \text { then } \frac{d^{2} y}{d x^{2}}=\cdots \\ & \text { (a) }-m^{2} y \text { (b) } m^{2} y \text { (c) }-m y \text { (d) } m y \end{aligned}$ |
| 24 |  |
| 25 | The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ with respect to $\cos ^{-1} x$ is.... <br> (a) 2 <br> (b) $\frac{1}{2 \sqrt{x^{2}-1}}$ <br> (c) $2 / x$ <br> (d) $1-x^{2}$ |
| 26 | The derivative of $(\sin x)^{\sin x}$ w.r.t. $x$ is <br> (a) $(\sin x)^{\sin x}(1+\log (\sin x))$ <br> (b) $(\sin x)^{\sin x}(1+\log (\sin x)) \cos x$ <br> (c) $(\sin x)^{\sin x}(1-\log (\sin x)) \cos x$ <br> (d) None of these |
| 27 | $\frac{d}{d x}\left\{\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\right\}=\ldots$ <br> (a) $1 / 2$ <br> (b) $-1 / 2$ <br> (c) 1 (d) -1 |
| 28 | Derivative of $x^{2}$ w.r.t. $x^{3}$ is.... <br> (a) $\frac{3}{2 x}$ <br> (b) $\frac{2}{3 x}$ <br> (c) $\frac{3 x}{2}$ <br> (d) None |
| 29 | Derivative of $\sin x^{0}$ w.r.t. x is.... <br> (a) $\operatorname{Cos} x$ <br> (b) $\cos x^{0}$ <br> (c) $\frac{180}{\pi} \cos x^{0}$ <br> (d) None of these |

## CASE STUDY QUESTIONS

## Q-1

Let $f(x)$ be a real valued function, then its
Left Hand Derivative (L.H.D) at the point a is $\mathrm{f}^{\prime}(\mathrm{a}-)=\lim _{x \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$ and
Right Hand Derivative (R.H.D) at the point $\mathbf{a}$ is $f^{\prime}(a+)=\lim _{x \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, also a function $f(x)$ is said to be differentiable at $\mathbf{x}=\mathbf{a}$ and if its L.H.D and R.H.D at $\mathbf{x}=\mathbf{a}$ exist and are equal. For the function $f(x)=\left\{\begin{array}{l}|x-3|\end{array}, x \geq 1\right.$

Answer the following questions:

| 1 | L.H.D of $f(x)$ at $x=1$ is |  |  |
| :---: | :---: | :---: | :---: |
|  | (a) 1 | (b). | -1 |
|  | (c) 0 | (d) | 2 |
| 2 | $f(x)$ is non differentiable at |  |  |
|  | (a) $\mathrm{x}=1$ | (b) | $x=2$ |
|  | (c) $\mathrm{x}=3$ | (d) | $x=4$ |
| 3 | Find the value of $\mathrm{f}^{\prime}(2)$ |  |  |
|  | (a) 1 | (b) | 2 |
|  | (c) 3 | (d) | -1 |
| 4 | Find the value of f ${ }^{\prime}(-1)$ |  |  |
|  | (a) $x=1$ |  | $\mathrm{x}=2$ |
|  | (c) $\quad x=-2$ |  | $x=-1$ |
| 5 | $\overline{\mathrm{R}} . \mathrm{H} . \overline{\mathrm{D}}$ of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1$ is |  |  |
|  | (a) 1 | (b) | -1 |
|  | (c) 0 | (d) | 2 |

## Q-2

A function $f(x)$ is said to be continuous in an open interval $(a, b)$, if it is continuous at every point in the interval.

A function $f(x)$ is said to be continuous in an closed interval [a,b], if $f(x)$ is continuous in (a,b) and
$\lim _{h \rightarrow 0} f(a+h)=f(a)$ and $\lim _{h \rightarrow 0} f(b-h)=f(b)$.
If function $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{\sin (a+1) x+\sin x}{x}, & x<0 \\ \frac{c,}{} \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{\frac{3}{2}}}, & x>0\end{cases}$
Is continuous at $x=0$, then answer the following questions:
$\underline{\mathbf{1}} \quad$ The value of ais:

| (a) | $-3 / 2$ | (b) | $1 / 2$ |
| :--- | :--- | :--- | :--- |
| (c) | 0 | (d) | $-1 / 2$ |

$\underline{2} \quad$ The value of bis:

| (a) | 1 | (b) | -1 |
| :--- | :--- | :--- | :--- |
| (c) | 0 | (d) | Any real number except 0 |

The value of cis :

| (a) | 1 | (b) | $1 / 2$ |
| :--- | :--- | :--- | :--- |
| (c) | -1 | (d) | $-1 / 2$ |

$4 \quad$ The value of $\mathbf{c}-\mathbf{a}$ is :

| (a) | 1 | (b) | -1 |
| :--- | :--- | :--- | :--- |
| (c) | 0 | (d) | 2 |

5
The value of $\mathbf{a + c}$ is :

| (a) | 1 | (b) | -1 |
| :--- | :--- | :--- | :--- |
| (c) | 0 | (d) | 2 |

PREPARED BY

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

## TERM - 1 MATHS CONTENT

CLASS: XII
CHAPTER: APPLICATION OF DERIVATIVES

| Q1 | The function $f(x)$, defined as $f(x)=4-3 x+3 x^{2}-x^{3}$ is: <br> (a) Decreasing on $R$ <br> (b) Increasing on R <br> (c) strictly increasing on $R$ <br> (d) Strictly decreasing on $R$ |
| :---: | :---: |
| Q2 | The interval in which function $y=x^{2} e^{-x}$ is increasing is: <br> (a) $(-\infty, \infty)$ <br> (b) $(-2,0)$ <br> (c) $(2, \infty)$ <br> (d) $(0,2)$ |
| Q3 | The function $f(x)=\cos x-\sin x$ has maximum or minimum value at $x=$ <br> (a) $\frac{\pi}{4}$ <br> (b) $\frac{3 \pi}{4}$ <br> (c) $\frac{\pi}{2}$ <br> (d) $\frac{\pi}{3}$ |
| Q4 | The interval in which the function $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$ is strictly increasing is: <br> (a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ <br> (b) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ <br> (c) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ <br> (d) $\left(0, \frac{\pi}{2}\right)$ |
| Q 5 | The function $f(x)=a x+b$ is strictly decreasing for all $x \in R$ iff: <br> (a) $a=0$ <br> (b) $a<0$ |


|  | (c) $a>0$ <br> (d) none of these |
| :---: | :---: |
| Q 6 | The function $f(x)=x^{x}$ is decreasing in the interval:. <br> (a) $(0, e)$ <br> (b) $(0,1 / e)$ <br> (c) $(0,1)$ <br> (d) none of these |
| Q 7 | The function $f(x)=\left[x(x-3)^{2}\right]$ is increasing in: <br> (a) $(0, \infty)$ <br> (b) $(-\infty, 0)$ <br> (c) $(1,3)$ <br> (d) $(0,3 / 2) \cup(3, \infty)$ |
| Q 8 | The function $f(x)=\tan x-4 x$ is strictly decreasing on the interval: <br> (a) $\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$ <br> (b) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ <br> (C) $\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$ <br> (d) $\left(\frac{\pi}{2}, \pi\right)$ |
| Q 9 | Tangents to the curve $y=x^{3}+3 x$ at $x=1$ and $x=-1$ are: <br> (a) parallel <br> (b) intersecting obliquely but not at an angle of $45^{\circ}$ <br> (c) intersecting at right angle <br> (d) intersecting at an angle of $60^{\circ}$ |
| Q10 | The equation of normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to the line $x+3 y=8$ is: <br> (a) $x+3 y=8$ <br> (b) $x+3 y+8=0$ <br> (c) $x+3 y=0$ <br> (d) $x+3 y \pm 8=0$ |
| Q11 | The point on curve $\mathrm{y}=(\mathrm{x}-3)^{2}$, where the tangent is parallel to the chord joining $(3,0)$ and $(4,1)$ is: <br> (a) $(-7 / 2,1 / 4)$ <br> (b) $(5 / 2,1 / 4)$ |


|  | (c) $(-5 / 2,1 / 4)$ <br> (d) $(7 / 2,1 / 4)$ |
| :---: | :---: |
| Q 12 | The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point <br> (a) $(1,2)$ <br> (b) $(2,1)$ <br> (c) $(1,-2)$ <br> (d) ( $-1,2$ ) |
| Q13 | The point on the curve $y^{2}=x$ where tangent makes an angle of $\frac{\pi}{4}$ with $x$ axis is: <br> (a) $(1 / 2,1 / 4)$ <br> (b) $(1 / 4,1 / 2)$ <br> (c) $(4,2)$ <br> (d) $(1,1)$ |
| Q14 | The slope of the normal to the curve: $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta), y=$ $a(\sin \theta-\theta \cos \theta)$ at any point $\theta$ is <br> (a) $\cot \theta$ <br> (b) $-\tan \theta$ <br> (c) $-\cot \theta$ <br> (d) $\tan \theta$ |
| Q15 | .The equation of all lines having slope 2 which are tangent to the curve $y=\frac{1}{x-3}, x \neq 3$ is <br> (a) $y=2$ <br> (b) $y=2 x$ <br> (c) $y=2 x+3$ <br> (d)none of these |
| Q16 | If $y=4 x-5$ is a tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$ then <br> (a) $p=-2, q=-7$ <br> (b) $p=-2, q=7$ <br> (c) $p=2, q=-7$ <br> (d) $p=2, q=7$ |
| Q 17 | The angle of intersection of curves $y=x^{2}$ and $6 y=7-x^{3}$ at $(1,1)$ is: <br> (a) $\frac{\pi}{2}$ <br> (b) $\frac{\pi}{4}$ <br> (c) $\frac{\pi}{3}$ |

\(\left.$$
\begin{array}{|l|l|}\hline & \text { (d) } \pi\end{array}
$$ \left\lvert\, \begin{array}{ll}\hline Qhe greatest value of f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3} on[0,1] is <br>
(a) 1 <br>
(b) 2 <br>
(c) 3 <br>

(d) 1 / 3\end{array}\right.\right]\)| Twenty meters of wire is available for fencing off a flower bed in the |
| :--- |
| form of a circular sector. Then the maximum area in sq. meters of the |
| flower bed is: |
| (a) 25 |
| (b) 30 |
| (c) 12.5 |
| (d) 10 |


|  | (a) 3 <br> (b) 4 <br> (c) 5 <br> (d) 7 |
| :---: | :---: |
| Q 24 | If $\mathrm{y}=\frac{a x-b}{(x-1)(x-4)}$ has a turning point $\mathrm{P}(2,-1)$, then the value of $a$ and $b$ respectively are <br> (a) 1,2 <br> (b) 2,1 <br> (c) 0,1 <br> (d) 1,0 |
| Q 25 | The height of cylinder of maximum volume that can be inscribed in a sphere of radius $a$ is: <br> (a) $2 a / 3$ <br> (b) $2 a / \sqrt{3}$ <br> (c) $a / 3$ <br> (d) $a / 5$ |
| Q 26 | The maximum value of $\left(\frac{1}{x}\right)^{x}$ is <br> (a) e <br> (b) $\mathrm{e}^{\mathrm{e}}$ <br> (c) $1 / \mathrm{e}^{\mathrm{e}}$ <br> (d) $\left(\frac{1}{e}\right)^{\frac{1}{e}}$ |
| Q 27 | If a point on the hypotenuse of a triangle is at a distance $a$ and $b$ from the sides of a triangle, then the minimum length of hypotenuse is <br> (a) $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)$ <br> (b) $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{3 / 2}$ <br> (c) $\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^{3 / 2}$ <br> (d)none of these |
| Q 28 | If a cone of maximum volume is inscribed in a given sphere, then the ratio of height of the cone to diameter of sphere is <br> (a) $3 / 4$ <br> (b) $1 / 3$ <br> (c) $1 / 4$ <br> (d) $2 / 3$ |


| Q 29 | If $f(x)=a \log x+b x^{2}+x$ has its extremum values at $x=-1$ and $x=2$ then <br> (a) $a=-1 / 2, b=2$ <br> (b) $a=1, b=-1$ <br> (c) $a=-1, b=1$ <br> (d) $a=2, b=-1 / 2$ |
| :---: | :---: |
| Q 30 | Semi vertical angle of a right circular cone of given total surface area and maximum volume is <br> (a) $\cos ^{-1} \frac{2}{3}$ <br> (b) $\sin ^{-1} \frac{1}{3}$ <br> (c) $\tan ^{-1} \sqrt{2}$ <br> (d) $\tan ^{-1} \frac{1}{3}$ |
|  | CASE STUDY: 1 The front gate of a building is in the shape of a trapezium as shown below. Its three sides other than base are 10 m each. The height of the gate is $h$ meter. On the basis of this information and figure given below, answer the following questions: |
| Q 1 | The area $A$ of the gate expressed as a function of $x$ is <br> (a) $(10+x) \sqrt{ }\left(100+x^{2}\right)$ <br> (b) $(10-x) \sqrt{ }\left(100+x^{2}\right)$ <br> (c) $(10+x) \sqrt{ }\left(100-x^{2}\right)$ <br> (d) $(10-x) \sqrt{\left(100-x^{2}\right)}$ |
| Q 2 | The value of $\frac{d A}{d x}$ is <br> (a) $\frac{2 x^{2}+10 x-100}{\sqrt{100-x^{2}}}$ |


|  | (b) $\frac{2 x^{2}-10 x-100}{\sqrt{100-x^{2}}}$ <br> (c) $\frac{2 x^{2}+10 x+100}{\sqrt{100-x^{2}}}$ <br> (d) $\frac{-2 x^{2}-10 x+100}{\sqrt{100-x^{2}}}$ |
| :---: | :---: |
| Q 3 | Value of x , for which $\frac{d A}{d x}=0$ <br> (a) 10 <br> (b) 5 <br> (c) 20 <br> (d) 15 |
| Q 4 | If at the value of x , where $\frac{d A}{d x}=0$, area of trapezium is maximum, then maximum area of trapezium is given by: <br> (a) $25 \sqrt{3}$ sq. m <br> (b) $100 \sqrt{3}$ sq. m <br> (c) $75 \sqrt{3}$ sq. m <br> (d) $50 \sqrt{3}$ sq. m |
| Q 5 | If area of trapezium is maximum, then value of $\frac{d^{2} y}{d x^{2}}$ is: <br> (a) Positive <br> (b) Negative <br> (c) Zero <br> (d) None of these |
|  | CASE STUDY : 2 A company which is located in Surat, Gujarat is manufacturing toys for the kids. If $P(x)=-5 x^{2}+125 x+37500$ is the total profit function of a company, where $x$ is the production of the company. |


|  | Based on above information, answer the following questions: |
| :---: | :---: |
| Q 1 | What will be the production when the profit is maximum? <br> a. 37500 <br> b. 12.5 <br> C. -12.5 <br> d. -37500 |
| Q 2 | What will be the maximum profit? <br> a. Rs $38,28,125$ <br> b. Rs 38281.25 <br> c. Rs 39,000 <br> d. None |
| Q 3 | Check in which interval the profit is strictly increasing . <br> a. $(12.5, \infty)$ <br> b. for all real numbers <br> c. for all positive real numbers <br> d. $(0,12.5)$ |
| Q 4 | When the production is 2 units what will be the profit of the company? <br> a. 37,500 <br> b. 37,730 <br> c. 37,770 <br> d. None |
| Q 5 | What will be production of the company when the profit is Rs 38250? a. 15 |


|  | b. 30 <br> c. 2 <br> d. data is not sufficient to find |
| :--- | :--- |
|  | CASE STUDY : 3 A student of class XII wants to construct a rectangular <br> tank for his house that can hold 80 cubic feet of water. The top of the <br> tank is open. The width of tank will be 5 ft but length and heights are <br> variables. Building the tank cost Rs 20 per sq. foot for the base and Rs. <br> 10 per square foot for the side. |

Q 4 Value of $h$ at which $c(h)$ is minimum is
(a) 6
(b) 6,7
(c) 4
(d) 5

Q 5 The cost of least expensive tank is
(a) 1120
(b) 1220
(c) 1100
(d) 1020

ANSWER KEY

| 1 | a |
| :--- | :--- |
| 2 | a |
| 3 | a |
| 4 | b |
| 5 | b |
| 6 | b |
| 7 | d |
| 8 | a |
| 9 | a |
| 10 | d |
| 11 | d |
| 12 | a |
| 13 | b |
| 14 | c |
| 15 | d |
| 16 | c |


| 17 | a |
| :---: | :---: |
| 18 | b |
| 19 | a |
| 20 | C |
| 21 | b |
| 22 | b |
| 23 | b |
| 24 | d |
| 25 | b |
| 26 | C |
| 27 | b |
| 28 | d |
| 29 | C |
| 30 | b |
|  | CASE STUDY 1 |
| 1 | C |
| 2 | d |
| 3 | b |
| 4 | C |
| 5 | b |
|  | CASE STUDY 2 |
| 1 | b |
| 2 | b |
| 3 | a |
| 4 | $b$ |


| 5 | $a$ |
| :--- | :--- |
|  | CASE STUDY 3 |
| 1 | a |
| 2 | d |
| 3 | b |
| 4 | c |
| 5 | a |

NAME OF TEACHER: MRS. SUMATI KAUSHIK
NAME OF KV : KV ONGC MEHSANA

## KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION TERM - 1 MATHS CONTENT <br> CLASS: XII <br> CHAPTER: LINEAR PROGRAMMING PROBLEM

| Q1 | Corner points of the feasible region for an LPP are ( 0,2 ), ( 3,0 ), ( 6,0 ), $(6,8)$ and $(0,5)$. Let $F=4 x+6 y$ be the objective function. The <br> Minimum value of $F$ occurs at $\qquad$ <br> (a) only $(0,2)$ <br> (b) only $(3,0)$ <br> (c) the mid-point of the line segment joining the points $(0,2)$ and $(3,0)$ only <br> (d) any point on the line segment joining the points $(0,2)$ and $(3,0)$. |
| :---: | :---: |
| Q2 | Solution set of the inequality $2 x+y>5$ is $\qquad$ <br> (a) The half plane containing origin <br> (b) The open half plane not containing origin <br> (c) $x y$-plane excepts the points on the line $2 x+y=5$ <br> (d) None of these |
| Q3 | The optimal value of the objective function is attained at the points. <br> (a) given by intersection of inequations with the axes only <br> (b) given by intersection of inequations with X-axis only <br> (c) given by corner points of the feasible region <br> (d) None of these |
| Q4 | Objective function of a LPP is $\qquad$ <br> (a) constant graph <br> (b) a function to be optimized <br> (c) inequality <br> (d) quadratic equation |
| Q 5 | The maximum value of $Z=x+4 y$ subject to the constraints $3 x+6 y \leq 6$, $4 x+8 y \geq 16, x \geq 0, y \geq 0$ is $\qquad$ <br> (a) 4 <br> (b) 8 |


|  | (c) unbounded feasible region <br> (d) Does not exist feasible region |
| :---: | :---: |
| Q 6 | Cake-A requires 200 g of flour and 25 g of fat. Cake-B requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat. The mathematical form of this LPP is $\qquad$ <br> (a) $Z=x+y, 2 x+y \leq 50, x+2 y \leq 40, x \geq 0, y \geq 0$ <br> (b) $Z=x+y, 2 x+y \leq 5, x+2 y \leq 1, x \geq 0, y \geq 0$ <br> (c) $Z=x+y, 200 x+100 y \leq 5,25 x+50 y \leq 1, x \geq 0, y \geq 0$ <br> (d) $Z=x+y, 200 x+100 y>5,25 x+50 y \geq 1, x \geq 0, y \geq 0$ |
| Q 7 | The point at which the maximum value of $Z=3 x+2 y$ subject to the constraints $x+2 y \leq 2, x \geq 0, y \geq 0$ is $\qquad$ <br> (a) $(0,0)$ <br> (b) $(1.5,-1.5)$ <br> (c) $(2,0)$ <br> (d) $(0,2)$ |
| Q 8 | The feasible region of the inequality $x+y \leq 1$ and $x-y \leq 1$ lies in $\qquad$ quadrants. <br> (a) Only I and II <br> (b) Only I and III <br> (c) Only II and III <br> (d) All the four |
| Q 9 | The position of the points $\mathrm{O}(0,0)$ and $\mathrm{P}(2,-1)$ is $\qquad$ in the region of the inequality $2 y-3 x<5$. <br> (a) O is inside the region and P is outside the region <br> (b) O and P both are inside the region <br> (c) O and P both are outside the region <br> (d) O is outside the region and P is inside the region |


| Q10 | The constraints $x+y \leq 4,3 x+3 y \geq 18, x \geq 0, y \geq 0$ defines on <br> (a) bounded feasible region <br> (b) unbounded feasible region <br> (c) feasible region in first and second quadrants <br> (d) does not exist |
| :---: | :---: |
| Q11 | The production of item $A$ is $x$ and the production of item $B$ is $y$. If the corner points of the bounded feasible region are $(1,0),(2,0),(0,2)$ and $(0,1)$ then the maximum profit $z=2000 x+5000 y$ is $\qquad$ <br> (a) 20,000 <br> (b) 5,000 <br> (c) 4,000 <br> (d) 10,000 |
| Q 12 | The vertices of the feasible region determined by some linear constraints are $(0,2),(1,1),(3,3),(1,5)$. Let $Z=p x+q y$ where $p, q>0$. The condition on $p$ and $q$ so that the maximum of $Z$ occurs at both the points $(3,3)$ and $(1,5)$ is $\qquad$ <br> (a) $p=q$ <br> (b) $p=2 q$ <br> (c) $q=2 p$ <br> (d) $p=3 q$ |
| Q13 | The maximum value of $Z=3 x+4 y$ subject to constraints $x+y \leq 4, x \geq 0$, $y \geq 0$ is $\qquad$ <br> (a) 16 <br> (b) 12 <br> (c) 0 <br> (d) not possible |
| Q14 | The shaded region in the given figure is a graph of $\qquad$ <br> (a) $4 x-2 y \leq 3$ <br> (b) $4 x-2 y \leq-3$ <br> (c) $2 x-4 y \geq 3$ <br> (d) $2 x-4 y \leq-3$ |


| Q15 | The feasible solution for a LPP is shown in Figure Let $z=3 x-4 y$ be the objective function. Minimum of $Z$ occurs at <br> (a) $(0,0)$ <br> (b) $(0,8)$ <br> (c) $(5,0)$ <br> (d) $(4,10)$ |
| :---: | :---: |
| Q16 | The feasible solution for a LPP is shown in Figure Let $z=3 x-4 y$ be the objective function. <br> (Maximum value of $z+$ Minimum value of $z$ ) is equal <br> to <br> (a) 13 <br> (b) 1 <br> (c) -13 <br> (d) -17 |
| Q 17 | The region represented by the inequation $x-y \leq-1, x-y \geq 0, x \geq 0, y \geq 0$ is $\qquad$ <br> (a) bounded <br> (b) unbounded <br> (c) do not exist <br> (d) triangular region |
| Q 18 | The maximum value of $Z=x+3 y$ subject to the constraints $2 x+y \leq$ $20, x+2 y \leq 20, x \geq 0, y \geq 0$ is $\qquad$ <br> (a) 10 <br> (b) 60 <br> (c) 40 <br> (d) 30 |
| Q19 | The solution set of the constraints $x+2 y \geq 11,3 x+4 y \leq 30,2 x+5 y \leq$ $30, x \geq 0, y \geq 0$ includes <br> the point. <br> (a) $(2,3)$ <br> (b) $(3,2)$ <br> (c) $(3,4)$ <br> (d) $(4,3)$ |


| Q20 | The corner points of the bounded feasible region are ( 0,1 ), ( 0,7 ), ( 2 , $7),(6,3)(6,0)(1,0)$. <br> For the objective function $Z=3 x-y$ <br> (i) At which point, Z is minimum ? <br> (ii) At which point, Z is maximum ? <br> (iii) The maximum value of $Z$ is $\qquad$ <br> (iv) The minimum value of $Z$ is $\qquad$ <br> (a) (i) $(2,7)$ <br> (ii) $(6,3)$ <br> (iii) 20 <br> (iv) -1 <br> (b) (i) $(0,7)$ <br> (ii) $(6,0)$ <br> (iii) 18 <br> (iv) -7 <br> (c) (i) $(0,1)$ <br> (ii) $(6,3)$ <br> (iii) 18 (iv) -1 <br> (d) (i) $(0,7)$ <br> (ii) $(6,0)$ <br> (iii) 15 (iv) -7 |
| :---: | :---: |
| Q 21 | A furniture manufacturer produces tables and bookshelves made up of wood and steel. The weekly requirement of wood and steel is given as below. Material Product p Wood Steel Table (x) 82 Book shelf (y) 113 The weekly variability of wood and steel is 450 and 100 units respectively. Profit on a table `1000 and that on a bookshelf is` 1200. To determine the number of tables and bookshelves to be produced every week in order to maximize the total profit, formulation of the problem as L.P.P. is <br> (a) Maximize $Z=1000 x+1200 y$ Subject to $8 x+11 y \geq 450,2 x+3 y \leq$ $100, x \geq 0, y \geq 0$ <br> (b) Maximize $Z=1000 x+1200 y$ Subject to $8 x+11 y \leq 450,2 x+3 y \geq$ $100, x \geq 0, y \geq 0$ <br> (c) Maximize $Z=1000 x+1200 y$ Subject to $8 x+11 y \leq 450,2 x+3 y \geq$ $100, x \geq 0, y \geq 0$ <br> (d) Maximize $Z=1000 x+1200 y$ Subject to $8 x+11 y \geq 450,2 x+3 y \geq$ $100, x \geq 0, y \geq 0$ |
| Q 22 | The feasible solution of LPP .......... <br> (A) satisfy all the constraints <br> (B) satisfy some of the constraints <br> (C) always corner points of feasible solution <br> (D) always optimal value of objective function |
| Q 23 | The point at which the maximum value of ( $3 x+2 y$ ) subject to the constraints $x+y \leq 2, x \geq 0, y \geq 0$ is obtained, is <br> (a) $(0,0)$ <br> (b) $(1.5,1.5)$ <br> (c) $(2,0)$ <br> (d) $(0,2)$ |


| Q 24 | The maximum value of $z=4 x+2 y$ subject to constraints $2 x+3 y \leq 18$, $x+y \geq 10$ and $x, y \geq 0$, is <br> (a) 36 <br> (b) 40 <br> (c) 20 <br> (d) None |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q 25 | The solution set of the following system of inequations: $x+2 y \leq 3,3 x+$ $4 y t 12, x \geq 0, y \geq 1$, is <br> (a) bounded region <br> (b) unbounded region <br> (c) only one point <br> (d) empty set |  |  |  |  |
| Q 26 | A printing company prints two types of magazines $A$ and $B$. The company earns `10 and` 15 on each magazine $A$ and $B$ respectively. These are processed on three machines I, II \& III and total time in hours |  |  |  |  |
|  | available per week on each machine is as follows: <br> Magzine $\rightarrow$ <br> Machine $\downarrow$ |  | A(x) | $B(y)$ | Time available |
|  |  |  |  |  |  |
|  | The number of constraints is <br> (a) 3 <br> (b) 4 <br> (c) 5 <br> (d) 6 | I | 2 | 3 | 36 |
|  |  | II | 5 | 2 | 50 |
|  |  | III | 2 | 6 | 60 |
| Q 27 | Inequation $\mathrm{y}-\mathrm{x} \leq 0$ represents <br> (a) The half plane that contains the positive $X$-axis <br> (b) Closed half plane above the line $y=x$, which contains positive $Y$-axis <br> (c) Half plane that contains the negative $X$-axis <br> (d) None of these |  |  |  |  |
| Q 28 | The region represented by the inequalities $x \geq 6, y \geq 2,2 x+y \leq 10$, $x \geq 0, y \geq 0$ is <br> (a) unbounded <br> (b) a polygon <br> (c) exterior of a triangle <br> (d) None of these |  |  |  |  |


| Q 29 | L.P.P. has constraints of <br> (a) one variables <br> (b) two variables <br> (c) one or two variables <br> (d) two or more variables |
| :---: | :---: |
| Q 30 | Which of the following statement is correct? <br> (a) Every L.P.P. admits an optimal solution <br> (b) A L.P.P. admits a unique optimal solution <br> (c) If a L.P.P. admits two optimal solutions, it has an infinite number of optimal solutions <br> (d) The set of all feasible solutions of a L.P.P. is not a convex set. |
|  | CASE STUDY: 1 <br> Suppose a dealer in rural area wishes to purchase a number of sewing machines. He has only Rs. 5760 to invest and has space for at most 20 items for storage. An electronic sewing machine costs him Rs. 360 and a manually operated sewing machine Rs. 240. He can sell an electronic sewing machine at a profit of Rs. 22 and a manually operated sewing machine at a profit of Rs. 18 . <br> Based on the above information, answer the following questions. |
| Q 1 | Let x and y denote the number of electronic sewing machines and manually operated sewing machines purchased by the dealer. If it is assumed that the dealer purchased atleast one of the given machines then: <br> (a) $x+y \geq 0$ <br> (b) $x+y<0$ <br> (c) $x+y>0$ <br> (d) $x+y \leq 0$ |
| Q 2 | Let the constraints in the given problem is represented by the following inequalities: <br> $x+y \leq 20 ; 360 x+240 y \leq 5760$ and $x, y \geq 0$. Then which of the following point lie in its feasible region. |

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { (a) }(0,24) \\
\text { (b) }(8,12) \\
\text { (c) }(20,2) \\
\text { (d) None of these }\end{array} \\
\hline \text { Q 3 } & \begin{array}{l}\text { If the objective function of the given problem is maximize } Z=22 x+18 y, \\
\text { then its optimal value occur at: } \\
\text { (a) }(0,0) \\
\text { (b) }(16,0) \\
\text { (c) }(8,12) \\
\text { (d) }(0,2)\end{array} \\
\hline \text { Q 4 } & \begin{array}{l}\text { Suppose the following shaded region APDO, represent the feasible } \\
\text { region corresponding to mathematical formulation of the given problem. } \\
\text { Then which of the following represent the coordinates of one of its } \\
\text { corner points. }\end{array} \\
\text { (a) (0,24) } \\
\text { (b) }(12,8) \\
\text { (c) }(8,12) \\
\text { (d) }(6,14)\end{array}
$$ \quad \begin{array}{l}If an LPP admits optimal solution at two consecutive vertices of a <br>
feasible region, then <br>
(a) The required optimal solution is at a mid pointof the line joining two <br>
points. <br>
(b) The optimal solution occurs at every point on the line joining these <br>
two points. <br>
(c) The LPP under consideration is not solvable. <br>

(d) The LPP under consideration must be reconstructed\end{array}\right\}\)| CASE STUDY : 2 |
| :--- |


|  | A manufacturing company makes two models X and Y of a product. Each piece of model X requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model Y requires 12 labour hours of fabricating and 3 labour hours for finishing, the maximum labour hours available for fabricating and finishing are 180 and 30 respectively. The company makes a profit of Rs. 8000 on each piece of model $X$ and Rs. 12000 on each piece of model $Y$. Assume $x$ is the number of pieces of model $X$ and $y$ is the number of pieces of model Y . <br> Based on the above information, answer the following questions |
| :---: | :---: |
| Q 1 | Which among these is not a constraint for this LPP? <br> (a) $9 x+12 y \geq 180$ <br> (b) $3 x+4 y \leq 60$ <br> (c) $x+3 y \leq 30$ <br> (d) None of these |
| Q 2 | The shape formed by the common feasible region is: <br> (a) Triangle <br> (b) Quadrilateral <br> (c) Pentagon <br> (d) Hexagon |
| Q 3 | Which among these is a corner point for this LPP? <br> (a) $(0,20)$ <br> (b) $(6,12)$ <br> (c) $(12,6)$ <br> (d) $(10,0)$ |
| Q 4 | Maximum of $Z$ occurs at <br> (a) $(0,20)$ <br> (b) $(0,10)$ <br> (c) $(20,10)$ <br> (d) $(12,6)$ |
| Q 5 | The sum of maximum value of $Z$ is: <br> (a) 168000 <br> (b) 160000 |


|  | (c) 120000 <br> (d) 180000 |
| :---: | :---: |
|  | CASE STUDY: 3 <br> A train can carry a maximum of 300 passengers. A profit of Rs. 800 is made on each executive class and Rs. 200 is made on each economy class. The IRCTC reserves at least 40 tickets for executive class. However, atleast 3 times as many passengers prefer to travel by economy class, than by executive class. It is given that the number of executive class ticket is Rs. $x$ and that of economy class ticket is Rs. $y$. Optimize the given problem. <br> Based on the above information, answer the following questions. |
| Q 1 | The objective function of the LPP is: <br> (a) $M a x Z=800 x+200 y$ <br> (b) $\operatorname{Max} Z=200 x+800 y$ <br> (c) $\operatorname{Min} Z=800 x+200 y$ <br> (d) $\operatorname{Min} Z=200 x+800 y$ |
| Q 2 | Which among these is a constraint for this LPP? <br> (a) $x+y \geq 300$ <br> (b) $y \geq 3 x$ <br> (c) $x \leq 40$ <br> (d) $y \leq 3 x$ |
| Q 3 | Which among these is not a corner point for this LPP? <br> (a) $(40,120)$ <br> (b) $(40,260)$ <br> (c) $(30,90)$ <br> (d) $(75,225)$ |

Q 4 The maximum profit is:
(a) Rs. 56000
(b) Rs. 84000
(c) Rs. 205000
(d) Rs. 105000

Q 5 Which corner point the objective function has minimum value?
(a) $(40,120)$
(b) $(40,260)$
(c) $(30,90)$
(d) $(75,225)$

## Answers

| 1.d | $2 . \mathrm{b}$ | $3 . \mathrm{c}$ | $4 . \mathrm{b}$ | 5.d | $6 . \mathrm{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7.c | $8 . \mathrm{d}$ | $9 . \mathrm{b}$ | $10 . \mathrm{d}$ | $11 . \mathrm{d}$ | $12 . \mathrm{a}$ |
| $13 . \mathrm{a}$ | $14 . \mathrm{b}$ | $15 . \mathrm{b}$ | $16 . \mathrm{d}$ | $17 . \mathrm{c}$ | $18 . \mathrm{d}$ |
| 19.c | $20 . \mathrm{b}$ | $21 . \mathrm{b}$ | $22 . \mathrm{a}$ | $23 . \mathrm{c}$ | $24 . \mathrm{d}$ |
| 25.d | $26 . \mathrm{c}$ | $27 . \mathrm{a}$ | $28 . \mathrm{d}$ | $29 . \mathrm{d}$ | $30 . \mathrm{c}$ |
| CASE <br> STUDY 1 | $1 . \mathrm{c}$ | $2 . \mathrm{b}$ | $3 . \mathrm{c}$ | $4 . \mathrm{c}$ | $5 . \mathrm{b}$ |
| CASE <br> STUDY 2 | $1 . \mathrm{a}$ | $2 . \mathrm{b}$ | 3.c | $4 . \mathrm{d}$ | $5 . \mathrm{a}$ |
| CASE <br> STUDY3 | 1.a | $2 . \mathrm{b}$ | 3.c | 4.d | 5.a |

NAME OF TEACHER :Mrs Bhavna Sutariya
NAME OF KV :CRPF Gandhinagar

